Patients with coronavirus disease 2019 (COVID-19) are at high risk of developing a hypercoagulable state and thrombosis. The von Willebrand factor (vWF) produced by endothelial cells (ECs) is a critical thrombosis regulator. We previously found that cytoskeleton-associated protein 4 (CKAP4) is a novel receptor for the spike protein of severe acute respiratory syndrome coronavirus-2 and is involved in COVID-19-associated coagulopathy. However, the underlying mechanism involved remains unclear. This study aimed to explore the signaling pathways involved in spike protein-CKAP4-induced vWF secretion and thrombosis. Treatment of ECs with the spike protein significantly induced vWF secretion, coagulation factor VIII (FVIII)-vWF binding, and platelet adhesion to ECs, which were blocked by the selective intracellular calcium chelator, BAPTA-AM. Furthermore, using several calcium channel-blocking drugs and small-molecule inhibitors, we found that calcium released from the endoplasmic reticulum (ER) is involved in this process. IP3 (inositol 1,4,5-trisphosphate) receptors (IP3Rs) inhibition ameliorated spike protein-induced vWF secretion, FVIII-vWF binding affinity, and platelet adhesion to ECs. Specifically, the knockdown of IP3R1, a crucial type of IP3Rs, reversed spike protein-induced endothelial vWF secretion, and the procoagulant state. Moreover, KT-362, an investigational and clinically relevant antihypertensive drug targeting IP3Rs-mediated calcium release, repressed spike protein-induced endothelial vWF secretion. Conversely, the IP3Rs agonist promoted endothelial vWF secretion, which was not affected by CKAP4 knockdown. In vivo treatment of endothelial-specific human CKAP4 overexpression mice with KT-362 retarded spike protein-induced vWF secretion and thrombosis. Thus, IP3Rs mediated calcium release from the ER and contributed to spike protein-induced vWF secretion and thrombosis, making them potential therapeutic targets for COVID-19-associated coagulopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2471-8767 | DOI Listing |
Rationale: Physiological responses to hypoxia involve adaptations in the hematopoietic and cardiovascular systems, which work together to ensure adequate oxygen delivery to tissues for energy production. The arginine/nitric oxide (NO) pathway regulates both systems through its effects on erythropoiesis and vasodilation. In Tibetan populations native to high-altitude hypoxia, increased NO production from arginine and decreased arginine metabolism by arginase contribute to these adaptive mechanisms.
View Article and Find Full Text PDFMicrob Cell Fact
March 2025
Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant pathogen associated with healthcare-related infections that are often challenging to treat. Conditions such as, skin and soft tissue infections, bloodstream infections, and pneumonia highlight the critical need for effective therapeutic strategies. Careful use of antibiotics under medical supervision is essential to prevent the further emergence of MRSA.
View Article and Find Full Text PDFLiver Int
April 2025
Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
Background And Purpose: Hepatic sinusoidal obstruction syndrome (HSOS) is a rare liver disorder with potentially life-threatening consequences for colorectal chemotherapy and haematopoietic stem cell transplant recipients. MALT1 (mucous-associated lymphoid tissue lymphoma translocation protein-1) is a protein that plays a key role in the production of inflammatory cytokines, ischemia, atherosclerosis, apoptosis and thromboinflammation; however, its role in HSOS is largely unknown. We aimed to investigate the effect of MALT-1 inhibition in in vitro and in vivo models of HSOS.
View Article and Find Full Text PDFThromb Haemost
March 2025
The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
Patients with coronavirus disease 2019 (COVID-19) are at high risk of developing a hypercoagulable state and thrombosis. The von Willebrand factor (vWF) produced by endothelial cells (ECs) is a critical thrombosis regulator. We previously found that cytoskeleton-associated protein 4 (CKAP4) is a novel receptor for the spike protein of severe acute respiratory syndrome coronavirus-2 and is involved in COVID-19-associated coagulopathy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Secreted mucins are multimegadalton glycoprotein polymers that share the function of protecting mucosal tissues but diversified for activities in different organs of the body. Structural studies of secreted mucins are complicated by the enormous sizes, flexibility, and complex supramolecular assembly modes of these glycoproteins. The two major respiratory mucins are MUC5AC and MUC5B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!