Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glioblastoma is the most aggressive and heterogeneous astrocytic tumor, with its intracranial location limiting the efficacy of conventional therapies. This study presents the synthesis of a multifunctional nanocomplex utilizing borophene nanosheets (B NSs) as a substrate. Gold nanoparticles (Au NPs) are modified onto the surface of B NSs to create Schottky heterojunctions (BAu). This is followed by co-precipitation solvothermal synthesis incorporating silver sulfide (AgS) and hyaluronic acid (HA) as a capping agent, yielding B-Au-AgS-HA (BAA-HA). The Schottky heterojunction reduces the bandgap and accelerates charge carrier separation, significantly enhancing the sonodynamic therapy (SDT) efficiency of B NSs. In comparison to B NSs, BAA-HA exhibits significantly improved photothermal conversion efficiency under 1064 nm laser irradiation, facilitating the cascade catalysis of glucose oxidase-like (GOx-like) and catalase-like (CAT-like) enzymes. This accelerates glucose and HO decomposition, increasing O supply to amplify SDT efficacy and induce immunogenic cell death (ICD), inducing a robust anti-tumor immune response. Ultrasound-targeted microbubble destruction technology is employed to transiently open the blood-brain barrier, allowing for targeted delivery of BAA-HA to glioblastoma cells via HA-mediated recognition of the CD44 receptor. Additionally, the NIR-II fluorescence properties of AgS enable precise tumor imaging, guiding multimodal synergistic therapy. This platform provides a promising strategy for treating deep-seated tumors, integrating therapeutic and diagnostic functions to enhance efficacy and precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!