Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.urology.2025.02.047 | DOI Listing |
Ophthalmic Genet
March 2025
Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA.
The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox () transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
March 2025
Division of Pediatric Cardiology, Stanford University School of Medicine, Palo Alto, CA, USA.
Background: Due to the presence of complex flow states and significant jet eccentricity in patients with congenital heart disease (CHD), accurate quantification of aortic regurgitation (AR) using standard echocardiographic or conventional cardiac magnetic resonance (CMR) imaging measures remains challenging. Four-dimensional flow (4DF) CMR permits transvalvular flow quantification under non-laminar flow states, although has not been well validated for AR quantification in CHD.
Methods: In 186 patients with moderate or complex CHD, we evaluated the agreement between different methods of AR quantification by 4DF CMR when compared to volumetry.
Hamostaseologie
March 2025
Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva and Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland.
Congenital fibrinogen deficiencies (CFDs), traditionally considered rare monogenic disorders, are now recognized as more prevalent and genetically complex than previously thought. Indeed, the symptoms manifested in CFD patients, such as bleeding and thrombosis, are likely to result from variation in several genes rather than solely driven by variants in one of the three fibrinogen genes, , , and . This review highlights recent advances in understanding the genetic causes of CFD and their variability, facilitated by the growing use and availability of next-generation sequencing data.
View Article and Find Full Text PDFEur J Cardiothorac Surg
March 2025
Department of Pediatrics, University of Toyama, Graduate School of Medicine, Toyama, Japan.
Objectives: Although there has been rapid development in the field of three-dimensional morphological analyses of congenital heart disease, with the three-dimensional volume-rendered images providing visualization of the external vascular anatomy, the precise reproduction of "Swiss-cheese" ventricular septum is not well established. We created three-dimensional printed models and computer graphics based on multi-slice computed tomography of patients with complex multiple ventricular septal defects for surgical decision planning of this difficult cardiac defect.
Methods: Seven patients with complex multiple ventricular septal defects were evaluated preoperatively using three-dimensional printed models and computer graphics to plan therapeutic interventions.
Sci Transl Med
March 2025
Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA.
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neonatal neurological impairment worldwide, but the viral factors enabling vertical spread across the placenta remain undetermined. The pentameric complex (PC), composed of the subunits gH/gL/UL128/UL130/UL131A, has been demonstrated to be important for entry into nonfibroblast cells in vitro. These findings link the PC to broad cell tropism and virus dissemination in vivo, denoting all subunits as potential targets for intervention strategies and vaccine development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!