New insights into Peniophora crassitunicata and its co-inoculation with commercial microbial inoculant accelerating lignocellulose degradation and compost maturation during orchard wastes composting.

Environ Res

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. Electronic address:

Published: March 2025

Lignocellulosic composting has been widely promoted in the utilization of agricultural wastes, while few focus on orchard lignocellulosic wastes in the fruit industry. Peniophora is a laccase hyper-producer highly efficient in lignin degradation, yet its application in lignocellulosic composting has not been investigated. Here, an aerobic composting experiment was conducted to investigate the effects of inoculation with Peniophora crassitunicata and a commercial microbial inoculant (mainly Bacillus and Aspergillus) on grape (Vitis Vinifera L.) orchard lignocellulosic wastes degradation and the underlying mechanisms. The inoculation with P. crassitunicata, both individually (H) and in combination with the commercial microbial inoculant (HS), enhanced lignocellulose degradation efficiency. Notably, the co-inoculation exhibited higher lignocellulose degradation ratios and higher lignocellulosic enzyme activities compared to other treatments. The compost piles with co-inoculation experienced a more rapid temperature rise, a longer duration (15 days) of high temperatures, lower pH, and lower electrical conductivity (EC). Firmicutes (e.g. Bacillus, Paenibacillus) and Ascomycota (e.g. Aspergillus) along with Bacteroidota, Actinobacteriota, and Basidiomycota (e.g. Peniophora) dominated the microbial community in compost; carbohydrate metabolism dominated microbial metabolic pathways at the thermophilic phase, highlighting an active microbial community. As compost processed, highly mature and non-toxic compost products were finally obtained for the co-inoculation, with a pH of 7.87, C/N ratio of 13.5, NH-N/NO-N ratio of 0.21-0.41, EC of 0.90 mS cm, and germination index of 149 %. The co-inoculation of P. crassitunicata with the commercial microbial inoculant effectively accelerated lignocellulose degradation and compost maturation, producing a friendly and non-toxic organic fertilizer for agricultural applications and thereby providing a new strategy for orchard wastes management and agricultural applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.121298DOI Listing

Publication Analysis

Top Keywords

commercial microbial
16
microbial inoculant
16
lignocellulose degradation
16
peniophora crassitunicata
8
degradation compost
8
compost maturation
8
orchard wastes
8
lignocellulosic composting
8
orchard lignocellulosic
8
lignocellulosic wastes
8

Similar Publications

Aims: The aim of this study was to assess the possible use of time to positivity (TTP) of blood cultures (BCs) collected at the Emergency Department (ED) to estimate the probability of pyogenic streptococci versus other Gram positive cocci in pairs and chains, such as , other viridans group streptococci or enterococci.

Methods: All patients 18 years of age or older evaluated at the ED from whom BCs were collected and were positive for Gram positive cocci in pairs and chains at the microscopic examination, were included in the study. The BCs included were collected by venipuncture, were mono-microbial and were the first bottles that flagged positive in each set.

View Article and Find Full Text PDF

Influence of calcium sources on the bio-mineralization behavior of and induced microbiologically influenced corrosion inhibition.

Front Microbiol

February 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China.

The influence of different calcium sources on the mineralization behavior of and their roles in microbiologically influenced corrosion inhibition (MICI) of Q235 carbon steel were investigated. Calcium lactate, calcium nitrate, and calcium L-aspartate were selected as alternative calcium sources to assess their effects on bacterial growth, carbonate deposition, and corrosion resistance. exhibited stable growth in all tested media, with the pH exceeding 8 after 14 days, promoting carbonate precipitation.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance.

View Article and Find Full Text PDF

Fungal infections, particularly those caused by , represent a significant global health concern, with drug resistance and biofilm formation posing considerable challenges to effective treatment. Baicalein, a flavonoid derived from baicalin found in , has demonstrated considerable antifungal efficacy. Moreover, the combination of baicalein and fluconazole demonstrated a notable synergistic effect.

View Article and Find Full Text PDF

Effects of partial silage replacement with corn stover pellets on the rumen microbiota and serum metabolome of breeding cows.

Front Microbiol

February 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.

Introduction: Straw pellet ration replacing part of silage is of great significance for farmers to save farming costs and solve the lack of feed resources. A comprehensive analysis of rumen microbial and serum metabolite compositions is conducted to promote the development of the modern breeding cows-feeding industry.

Methods: In this study, 18 healthy 2-year-old Simmental breeding cows weighing 550 ± 20 kg were selected and randomly divided into two groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!