The development of the human brain is a complex, lifelong process during which collective behaviors of neurons exhibit self-organizing dynamics. Metastable states play a crucial role in understanding the complex dynamical mechanisms of the brain, and analyzing them helps to reveal the mechanisms of functional changes in the brain throughout development and aging. Specifically, global metastable state provides a overall perspective on the flexibility of brain reorganization, while the evolution trajectories of transient functional patterns capture detailed changes in brain activity. The leading eigenvector dynamics analysis (LEiDA) method significantly reduces the dimensionality of data and is widely used to capture the temporal trajectory characteristics of transient functional patterns, i.e., metastable brain states. However, LEiDA's linear dimensionality reduction of high-dimensional raw brain data may overlook non-linear information and lose some relationships between features. We developed a framework based on Phase Coherence Graph Autoencoder (PCGAE) that employs graph autoencoders (GAE) for non-linear dimensionality reduction of phase coherence matrices. This approach clusters to identify more distinct metastable brain states and is applied to the analysis of resting-state functional magnetic resonance imaging (rs-fMRI) data across the human lifespan. This paper investigates age-related differences and continuity changes from different perspectives: metastable state indicators and state trajectory indicators (occurrence probability, lifetime, and state transition metrics). Global metastable state shows a linear decline with age, while both linear and quadratic effects of age-related changes are observed in detailed state metastable and state trajectory indicators. Finally, the proposed feature extraction scheme demonstrates good classification performance for categorizing brain age groups. These findings can help us understand the self-organizing reorganization characteristics associated with aging and their complex dynamic changes, providing new insights into brain development throughout the entire lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2025.121119DOI Listing

Publication Analysis

Top Keywords

metastable state
16
phase coherence
12
brain
11
based phase
8
coherence graph
8
graph autoencoders
8
metastable
8
metastable states
8
changes brain
8
brain development
8

Similar Publications

Ovarian cancer (OC) is characterized by high mortality rates due to late diagnosis, recurrence, and metastasis. Here, we show that extracellular signaling molecules secreted by adipose-derived mesenchymal stem cells (ASCs) and OC cells-either in the conditioned medium (CM) or within small extracellular vesicles (sEVs)-modulate cellular responses and drive OC progression. ASC-derived sEVs and CM secretome promoted OC cell colony formation, invasion, and migration while upregulating tumor-associated signaling pathways, including TGFβ/Smad, p38MAPK/ERK1/2, Wnt/β-catenin, and MMP-9.

View Article and Find Full Text PDF

The development of sustainable and tunable materials is crucial for advancing modern technologies. We present a controlled synthesis of colloidal Na-Cu-S nanostructures. To overcome the reactivity difference between Na and Cu precursors toward chalcogens in a colloidal synthesis and to achieve metastable phase formation, we designed a single-source precursor for Cu and S.

View Article and Find Full Text PDF

Despite their wide use as molecular photoswitches, the mechanistic photophysics of azo dyes are complex and nuanced, and therefore under-explored. To understand the complex electronic interactions that govern the photoisomerization and thermal reversion of two phenyl-azo-indole dyes that differ by R-sterics near the azo bond, potential energy surfaces that combine the dihedral rotation of the azo bond and the aryl inversion on each side of the azo bond were calculated with density functional theory and time-dependent density functional theory. These multidimensional singlet surfaces provide insights into the correlated rotation and inversion pathways allowing for detailed understanding of both photoisomerization, governed by the excited-state surfaces, and thermal reversion, governed by the ground-state surface, mechanisms to be developed.

View Article and Find Full Text PDF

Solvent/temperature dual-responsive photonic crystal structural-color films through double inverse opal structure.

Chem Commun (Camb)

March 2025

State Key Laboratory of Metastable Material Science and Technology, School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China.

A solvent/temperature dual-responsive P(NIPAM-AM) hydrogel is proposed. The free energy model of the hydrogel microstructure and the transformation of the properties of the hydrogel chain segment during deformation were further analyzed. The resultant structural-color hydrogel film was applied to on-demand patterning.

View Article and Find Full Text PDF

Reduced protein solubility - cause or consequence in amyloid disease?

QRB Discov

February 2025

Biochemistry and Structural Biology, Lund University, Lund, Sweden.

In this perspective, we ask the question whether the apparently lower solubility of specific proteins in amyloid disease is a cause or consequence of the protein deposition seen in such diseases. We focus on Alzheimer's disease and start by reviewing the experimental evidence of disease-associated reduction in the measured concentration of amyloid β peptide, Aβ42, in cerebrospinal fluid. We propose a series of possible physicochemical explanations for these observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!