Breast cancer (BC) is a complex disease that affects millions of women worldwide. Its growing impact calls for advanced treatment strategies to improve patient outcomes. The PI3K/AKT/mTOR pathway is a key focus in BC therapy because it plays a major role in important processes like tumor growth, survival, and resistance to treatment. Targeting this pathway could lead to better treatment options and outcomes. The present review explores how the PI3K/AKT/mTOR pathway becomes dysregulated in BC, focusing on the genetic changes like PIK3CA mutations and PTEN loss that leads to its aggravation. Current treatment options include the use of inhibitors targeting PI3K, AKT, and mTOR with combination therapies showing promise in overcoming drug resistance and improving effectiveness. Looking ahead, next-generation inhibitors and personalized treatment plans guided by biomarker analysis may provide more accurate and effective options for patients. Integrating these pathway inhibitors with immunotherapy offers an exciting opportunity to boost anti-tumor responses and improve survival rates. This review offers a comprehensive summary of the current progress in targeting the PI3K/AKT/mTOR pathway in BC. It highlights future research directions and therapeutic strategies aimed at enhancing patient outcomes and quality of life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2025.116850 | DOI Listing |
Food Sci Nutr
March 2025
Department of Pharmacognosy, College of Pharmacy Jouf University Sakaka Saudi Arabia.
Isoflavones are currently being investigated by researchers in order to demonstrate their ability to prevent the proliferation of cancer cells. The current review aimed to demonstrate the potential of isoflavones to eliminate cancerous cells in the stomach, liver, lung, breast, and prostate, as their anticancer properties are due to the ability to block the signaling pathways of the extracellular signal-controlled kinase (MAPK/ERK) and proteasome (PI3K/AKT/mTOR). Isoflavones can inhibit the cell division of various cancer cells.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany.
The transcription factor carbohydrate response element binding protein (ChREBP) has emerged as a crucial regulator of hepatic glucose and lipid metabolism. The increased ChREBP activity involves the pro-oncogenic PI3K/AKT/mTOR signaling pathway that induces aberrant lipogenesis, thereby promoting hepatocellular carcinomas (HCC). However, the molecular pathogenesis of ChREBP-related hepatocarcinogenesis remains unexplored in the high-fat diet (HFD)-induced mouse model.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
Triple-negative breast cancer (TNBC) is a type of breast cancer characterized by high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. L.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) pathway plays a crucial role in the regulation of autophagy, a cellular mechanism vital for homeostasis through the degradation of damaged organelles and proteins. The dysregulation of this pathway is significantly associated with cancer progression, metastasis, and resistance to therapy. Targeting the PI3K/AKT/mTOR signaling pathway presents a promising strategy for cancer treatment; however, traditional therapeutics frequently encounter issues related to nonspecific distribution and systemic toxicity.
View Article and Find Full Text PDFMolecules
February 2025
Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa, Poland.
Ferulic acid (FA) is a polyphenol that is found in plants and fruits. It has a wide range of anticancer properties, including participating in cell apoptosis, inhibiting invasion and angiogenesis, and acting synergistically with standard cytostatic agents in malignant tumors. A range of molecular mechanisms are involved in anticancer activity and include the following ones: activation of cell-cycle-related proteins and enzymes such as p53, p21, Bax, and pro-caspases 3 and 9, reduction of cyclin D1 and E, proapoptotic Bcl-2, MMP-9, and NF-kV, which decrease VEGF, leading to cell cycle arrest at G0/G1 phase and death of cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!