KCTD20 suppression mitigates excitotoxicity in tauopathy patient organoids.

Neuron

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Published: February 2025

Excitotoxicity is a major pathologic mechanism in patients with tauopathy and other neurodegenerative diseases. However, the key neurotoxic drivers and the most effective strategies for mitigating these degenerative processes are unclear. Here, we show that glutamate treatment of induced pluripotent stem cell (iPSC)-derived cerebral organoids induces tau oligomerization and neurodegeneration and that these phenotypes are enhanced in organoids derived from tauopathy patients. Using a genome-wide CRISPR interference (CRISPRi) screen, we find that the suppression of KCTD20 potently ameliorates tau pathology and neurodegeneration in glutamate-treated organoids and mice, as well as in transgenic mice overexpressing mutant human tau. KCTD20 suppression reduces oligomeric tau and improves neuron survival by activating lysosomal exocytosis, which clears pathological tau. Our results show that glutamate signaling can induce neuronal tau pathology and identify KCTD20 suppression and lysosomal exocytosis as effective strategies for clearing neurotoxic tau species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2025.02.001DOI Listing

Publication Analysis

Top Keywords

kctd20 suppression
12
effective strategies
8
tau pathology
8
lysosomal exocytosis
8
tau
7
kctd20
4
suppression mitigates
4
mitigates excitotoxicity
4
excitotoxicity tauopathy
4
tauopathy patient
4

Similar Publications

KCTD20 suppression mitigates excitotoxicity in tauopathy patient organoids.

Neuron

February 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Excitotoxicity is a major pathologic mechanism in patients with tauopathy and other neurodegenerative diseases. However, the key neurotoxic drivers and the most effective strategies for mitigating these degenerative processes are unclear. Here, we show that glutamate treatment of induced pluripotent stem cell (iPSC)-derived cerebral organoids induces tau oligomerization and neurodegeneration and that these phenotypes are enhanced in organoids derived from tauopathy patients.

View Article and Find Full Text PDF

The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of protein-protein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!