Background: Patients with breast cancer (BC) who benefit from the PD-1/PD-L1 inhibitor (PDi) is limited, necessitating novel strategies to improve immunotherapy efficacy of BC. Here we aimed to investigate the inhibitory effects of flaxseed lignans (FL) on the biological behaviors of BC and evaluate the roles of FL in enhancing the anticancer effects of PDi.

Methods: HPLC was used to detect the content of enterolactone (ENL), the bacterial transformation product of FL. Transcript sequencing was performed and identified CD38 as a downstream target gene of ENL. CD38-overexpressing cells were constructed and cell proliferation, colony formation, wound healing and transwell assays were used to assess the function of ENL/CD38 axis on BC cells in vitro. Multiplexed immunohistochemistry (mIHC) and CyTOF were used to detect the changes of the tumor immune microenvironment (TIM). 16S rDNA sequencing was used to explore the changes of gut microbiota in mice. A series of in vivo experiments were conducted to investigate the anticancer effects and mechanisms of FL and PDi.

Results: FL was converted to ENL by gut microbiota and FL administration inhibited the progression of BC. ENL inhibited the malignant behaviors of BC by downregulating CD38, a key gene associated with immunosuppression and PD-1/PD-L1 blockade resistance. The mIHC assay revealed that FL administration enhanced CD3, CD4 and CD8 cells and reduced F4/80 cells in TIM. CyTOF confirmed the regulatory effects of FL and FL in combination with PDi (FLcPDi) on TIM. In addition, 16S rDNA analysis demonstrated that FLcPDi treatment significantly elevated the abundance of Akkermansia and, importantly, Akkermansia administration enhanced the response to PDi in mice treated with antibiotics.

Conclusions: The FL/ENL/CD38 axis inhibited BC progression. FL enhanced the anticancer effects of PDi by modulating gut microbiota and host immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2025.101222DOI Listing

Publication Analysis

Top Keywords

anticancer effects
12
gut microbiota
12
flaxseed lignans
8
breast cancer
8
modulating gut
8
host immunity
8
16s rdna
8
inhibited progression
8
administration enhanced
8
effects
5

Similar Publications

Medicinal plants are crucial in the comprehensive treatment of anti-tumor with the advantages of high efficacy, low toxicity, multiple pathways and multi-targets synergy, leading to be a focal point of study for many oncologists. Identifying effective monomer components with anti-tumor properties from medicinal plants has long been a crucial focus in the study and development of traditional Chinese medicine. This endeavor has significant research value and promising possibilities for further advancement.

View Article and Find Full Text PDF
Article Synopsis
  • The respiratory system is vital for oxygen absorption and carbon dioxide expulsion, helping to maintain the body's acid-base balance and metabolic stability.
  • The outbreak of COVID-19 has highlighted the need for new treatments for respiratory diseases, leading to renewed interest in Tanshinone IIA, a bioactive compound traditionally used for heart diseases.
  • Research shows Tanshinone IIA has various therapeutic effects, including anti-inflammatory and anti-cancer properties, and it shows promise in treating conditions like asthma and lung cancer, making it a valuable focus for future studies.
View Article and Find Full Text PDF

Introduction: Multi-drug resistance (MDR) is one of the leading reasons that cause the failures of cancer treatment. Novel agents that may reverse MDR and neutralize drug-resistant cancer cells are highly desirable for clinical practice. The targeting of cellular redox homeostasis and/or mitochondria-mediated energy metabolism are promising strategies for the suppression of drug-resistant cancer cells.

View Article and Find Full Text PDF

Cepharanthine hydrochloride: a novel ferroptosis-inducing agent for prostate cancer treatment.

Front Pharmacol

February 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Background: Ferroptosis is an intracellular iron-dependent cell death that is distinct from apoptosis, necrosis, and autophagy. Increasing evidence indicated that ferroptosis plays a crucial role in suppressing tumors, thus providing new opportunities for cancer therapy. The drug cepharanthine, commonly used to treat leukopenia, has been discovered to function as an anticancer agent to multiple types of cancer via diverse mechanisms.

View Article and Find Full Text PDF

Biomimetic Self-Oxygenated Immunoliposome for Cancer-Targeted Photodynamic Immunotherapy.

Int J Nanomedicine

March 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.

Objective: Photodynamic therapy (PDT) is a promising strategy with significant clinical application potential for tumor treatment. However, the tumor hypoxia and limited efficacy against tumor metastasis present significant limitations in the clinical application of PDT. To alleviate tumor hypoxia for PDT against tumor growth and metastasis, we developed a self-oxygenated immunoliposome by encapsulating the catalase (CAT) within the liposome cavity and loading the photosensitizer chlorin e6 (Ce6) and immunoadjuvant MPLA in the lipid bilayer of the immunoliposome (CAT@LP-Ce6-A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!