Toxic interactions between fluoxetine and microplastics in zebrafish embryonic development.

Sci Total Environ

Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.

Published: March 2025

The increasing use of antidepressants, especially fluoxetine (FLX), has resulted in their presence in aquatic environments due to wastewater discharges from municipal, industrial, and hospital sources. Simultaneously, microplastics (MPs) have been extensively studied in short-term (acute) exposures, showing adverse effects such as oxidative stress, behavioral alterations and neurotoxicity. However, the embryotoxic and teratogenic effects of these compounds, as well as their impacts on the survival, development, morphology, behavior, and reproduction of fish embryos in aquatic ecosystems, remain limited. This study evaluated the toxic effects of FLX (5, 40 ng/L), MPs (25, 100 particles/L) and their mixtures (FLX-MPs) at environmentally relevant concentrations. Microscopic characterization of fluorescent MPs was performed, and their presence was evaluated in Danio rerio embryos at 24 and 96 hpf, observing their localization in the chorion. In embryotoxicity and teratogenesis tests, FLX (100 ng/L) increased the rate of malformations, including deformations of the spine (CD), tail (TM) and hypopigmentation (H); MPs induced scoliosis (S), tail deformation (TM), incomplete hatching (IE) and a dose-dependent increase in malformations. FLX-MPs mixtures caused pericardial edema (PE), tail and spine deformation, delayed hatching (HR) and increased mortality. Oxidative damage analysis showed that FLX (40 ng/L) dose-dependently increased SOD and CAT activities, with an increase in cellular oxidation biomarkers (LPX, POX, HPX). Besides, MPs (100 particles/L) showed similar effects, with increased SOD, CAT, POX and HPX activities. The FLX-MPs mixture showed the most pronounced response. In gene expression, FLX (5, 40 ng/L) modulated genes such as bax, blc2 and casp3. MPs (25, 100 particles/L) induced the expression of bax, blc2, p53 and casp3. FLX-MPs mixtures (25 particles/L-40 ng/L, 100 particles/L-40 ng/L) expressed nfr1, p53, nfe2l2a and casp3. Histological damage revealed abnormal muscle fibers (AMF) and yolk sac edema (YSE) at 40 ng/L FLX, and lamellar fusion (LF) and scoliosis (S) in MPs (100 particles/L). Brain swelling (IBT) and neuromast loss (NL) were detected in FLX-MPs mixtures. In conclusion, both FLX and MPs and their combinations affect the embryonic development and physiological state of Danio rerio.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.179040DOI Listing

Publication Analysis

Top Keywords

mps 100
16
100 particles/l
16
flx 40 ng/l
12
flx-mps mixtures
12
embryonic development
8
mps
8
danio rerio
8
increased sod
8
sod cat
8
pox hpx
8

Similar Publications

Background: In the human placenta, we have detected the MPs by Raman microspectroscopy analysis and, for the first time, with transmission electron microscopy. MPs fragments have been localized in different compartments of placental tissue, free in the cytoplasm and within organelles like lysosomes. Moreover, their presence has been correlated with ultrastructural alterations of some cell organelles, typical of metabolic stress, mainly dilated rough endoplasmic reticulum and numerous swollen electrodense mitochondria, as well as signs derived from involuting organelles.

View Article and Find Full Text PDF

Investigating the swelling behavior of superabsorbent polymer microparticles (SAP-MPs) at a single-particle level using traditional methods is constrained by low resolution and insufficient real-time data, especially for particles smaller than 300 µm. To address these challenges, a novel microfluidic device capable is developed of real-time, high-precision single-particle analysis. This platform hydrodynamically traps individual SAP-MPs, enabling continuous monitoring of their swelling dynamics under controlled conditions.

View Article and Find Full Text PDF

Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy.

View Article and Find Full Text PDF

Matrix preparation and workflow for microplastics analysis in soil.

Chemosphere

March 2025

Eskişehir Technical University, Department of Environmental Engineering, 26555, Eskişehir, Türkiye; Eskişehir Technical University, Environmental Research Center (ÇEVMER), 26555, Eskişehir, Türkiye. Electronic address:

One of the main difficulties in microplastic (MP) research is the lack of standardized, real-world methods such as matrix blank and simultaneous tracking of polymer particles for enumeration. Building on a previous study, a matrix preparation and experimental workflow for soil matrices is presented that addresses the challenges of purification to allow subsequent analysis using Nile Red-stained MPs as a surrogate. Key steps include peroxide digestion and density separation (NaI) followed by centrifugation for low density polyethylene (LDPE) and polyvinyl chloride (PVC) surrogates to assess recoveries in terms of number and size, based on fluorescence microscopy and Raman spectroscopy.

View Article and Find Full Text PDF

Microplastic (MP) contamination in marine environments is a growing concern; however, the selectivity of sampling nets can introduce significant biases in MP pollution monitoring and assessments, particularly for smaller MPs, leading to an underestimation of their presence and complicating data comparability across studies. This study addresses this challenge by developing a new selectivity model that accounts for the biases in assessments. Further, it provides a robust framework for correcting MP concentration data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!