A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide characterization of citrus remorin genes identifies an atypical remorin CsREM1.1 responsible for fruit disease resistance. | LitMetric

Genome-wide characterization of citrus remorin genes identifies an atypical remorin CsREM1.1 responsible for fruit disease resistance.

Plant Physiol Biochem

Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China. Electronic address:

Published: March 2025

Remorins (REMs) are plant-specific proteins associated with plasma membrane (PM) and exhibit diverse biological functions. However, the roles of remorins in fruit crops and fruit disease resistance remain unexplored. Here, we performed a genome-wide characterization of remorin genes from citrus (Citrus sinensis) and identified an atypical remorin CsREM1.1 responsible for fruit resistance to Penicillium digitatum (Pd), a notorious postharvest fungal pathogen of citrus. Ten remorin genes were identified in the C. sinensis genome and they were categorized into five groups. A lot of cis-elements involved in hormone and stress responsiveness were exhibited in the promoter regions of citrus remorin genes. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the majority of citrus remorin genes, especially CsREM1.1, were significantly induced in citrus fruit upon Pd infection. Unlike typical remorins, CsREM1.1 exhibited nuclear localization in addition to its traditional PM localization. Transient expression of CsREM1.1 in the model plant Nicotiana benthamiana suppressed plant cell death triggered by BAX, an important pro-apoptotic factor, and enhanced plant resistance to Botrytis cinerea. Moreover, transient overexpression or silencing of CsREM1.1 in citrus fruit indicated the important contribution of CsREM1.1 in fruit resistance to Pd. Our study increases the understanding of plant remorins and provides valuable insights for future research on fruit disease resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2025.109731DOI Listing

Publication Analysis

Top Keywords

remorin genes
20
citrus remorin
12
fruit disease
12
disease resistance
12
genome-wide characterization
8
citrus
8
atypical remorin
8
remorin csrem11
8
csrem11 responsible
8
fruit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!