Bioprinting shows significant promise in advancing medical treatments by offering patient-specific solutions for repairing skeletal muscle tissues. Zinc (Zn) is one of the key ions in the human body involved in the development of myogenic cells. This study investigates the integration of Zn-doped bioactive inorganic fillers (BIFs) into alginate-dialdehyde-gelatin (ADA-GEL) as composite ink for bioprinting applications. BIFs were mesoporous calcium-silicate-based bioactive glass nanoparticles with nominal composition: 80% SiO-X% CaO-Y% ZnO (X = 20, 18, 15, or 10; Y = 0, 2, 5, or 10; mol%). Ion release profiles confirmed that the addition of Zn ions prevented the burst release of Si and Ca ions. The incorporation of BIFs, particularly at higher dopant concentrations, significantly affected the hydrogel swelling and mechanical properties. With increasing concentration of Zn ions (to 5 mol%), the hydrogels exhibited greater dimensional swelling after 24 h of incubation in aqueous solutions, while all compositions lost weight over time after the initial swelling phase. Indirect cell studies demonstrated that 0.1 wt% BIFs extracts, obtained after 24 h-incubation in a cell culture medium, were cytocompatible with C2C12 cells. Furthermore, bioprinted C2C12 cells encapsulated in the bioinks showed a clear increase in cell number after seven days of culture. In particular, cells in the composite inks containing Zn-BIFs exhibited higher spreading, elongation, and alignment than those in pure ADA-GEL, indicating the biological activity provided by the Zn-BIF particles. This study introduces therefore an effective formulation of ADA-GEL-based composite bioinks enriched with Zn-containing nanoparticles for skeletal muscle tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2025.214233DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
ada-gel-based composite
8
composite inks
8
zn-doped bioactive
8
bioactive inorganic
8
inorganic fillers
8
c2c12 cells
8
printable ada-gel-based
4
composite
4
inks zn-doped
4

Similar Publications

Engineering strategies for the construction of oriented and functional skeletal muscle tissues.

Biofabrication

March 2025

Institute of Zoology Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, 100101, CHINA.

The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of in vitro construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means.

View Article and Find Full Text PDF

Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.

View Article and Find Full Text PDF

Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices.

View Article and Find Full Text PDF

Dual-filament regulation of relaxation in mammalian fast skeletal muscle.

Proc Natl Acad Sci U S A

March 2025

Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.

Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca] and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!