Morphology-Controlled Long-Range Photogenerated Charge Carrier Transfer Pathway for Enhanced Photocatalytic Hydrogen Production.

Nano Lett

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China.

Published: March 2025

Achieving precise control over the construction of efficient charge transport channels through self-assembly engineering represents a highly effective strategy for the synthesis of organic supramolecular photocatalysts. Herein, tetragonal zinc meso-5,10,15,20-tetra(4-pyridyl) porphyrin (ZnTPyP) nanorods (T-ZnTPyPs) and hexagonal ZnTPyP nanowires (H-ZnTPyPs) were synthesized by varying the assembly temperature. H-ZnTPyPs demonstrated a photocatalytic hydrogen production rate (183 mmol/g/h) that was 14.62 times greater than that of T-ZnTPyP (13 mmol/g/h). This significantly enhanced activity is primarily attributed to the distinct and well-defined molecular arrangements of H-ZnTPyPs, which support continuous linear long-range electron transfer pathways through effective π-π stacking. Conversely, the heat manipulation used in the synthesis of T-ZnTPyPs limits the participation of water molecules in the crystalline stacking arrangements, leading to lattice distortions that disrupt the π-π stacking interactions and significantly impede long-range electron transfer pathways. This research presents a novel strategy for modulating π-π stacking to optimize charge transport in supramolecular photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c00528DOI Listing

Publication Analysis

Top Keywords

π-π stacking
12
photocatalytic hydrogen
8
hydrogen production
8
charge transport
8
supramolecular photocatalysts
8
long-range electron
8
electron transfer
8
transfer pathways
8
morphology-controlled long-range
4
long-range photogenerated
4

Similar Publications

Photocatalytic water splitting for hydrogen production has been considered as an effective approach to address the current energy crisis and environmental challenges. Among all materials for such applications, covalent triazine frameworks (CTFs) are regarded as ideal candidates owing to their conjugated structures with rich aromatic nitrogen atoms, which can provide abundant active sites, suitable bandgaps, good structural tunability, and high chemical stability. Although current research studies have shown that the modification of functional groups in CTFs can adjust the band structure and carrier flow characteristics of photocatalysts, leading to improved performance, the impact of the intrinsic structural characteristics of CTFs (, stacking modes, hydrogen bonding) on their photocatalytic performance remains unclear.

View Article and Find Full Text PDF

First-principles calculations show that the geometric and electronic properties of silicene-related systems have diversified phenomena. Critical factors of group-IV monoelements, like buckled/planar structures, stacking configurations, layer numbers, and van der Waals interactions of bilayer composites, are considered simultaneously. The theoretical framework developed provides a concise physical and chemical picture.

View Article and Find Full Text PDF

Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo W Y.

J Phys Condens Matter

December 2019

School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China.

Artificial van der Waals (vdW) heterojunctions assembled by atomically-thin two-dimensional (2D) materials have demonstrated new physical phenomena and unusual properties, thus triggering new electronic, optoelectronic, valleytronic and photocatalytic application. Herein, the electronic band structures of different vdW heterojunctions based on ternary Mo W Y (Y  =  S, Se; x  =  0-1) monolayer with five stacking orders (AA, AA[Formula: see text], A[Formula: see text]B, AB, AB[Formula: see text]) have been investigated using first principle calculations. The direct/indirect band gap has been obtained in the AA[Formula: see text] stacking type-II heterojunctions, ranging from 0.

View Article and Find Full Text PDF

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅) π-stacks of radicals, respectively.

View Article and Find Full Text PDF

A 500 and 300 MHz proton NMR study of the series of oligoarabinonucleotides 5'aAMP, 3'aAMP, aA-aA, (aA-)2aA and (aA-)3aA is presented. In addition, circular dichroism is used to study the stacking behaviour of aA-aA. The complete 1H-NMR spectral assignment of the compounds (except the tetramer) is given.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!