Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synthesis of nitrogen-containing molecules through carbon-nitrogen (C-N) bond formation is critical for the discovery and preparation of medicines, agrochemicals, and materials. Here, we report the direct insertion of a nitrogen atom into unactivated carbon-carbon double bonds to access aza-allenium intermediates, which can be converted either into nitriles or amidine products, depending on the initial alkene substitution pattern. This operationally simple and highly functionally compatible reaction works on a wide range of unactivated alkenes. PIFA, a commercially available and inexpensive hypervalent iodine reagent, is key to this reactivity. Our mechanistic proposal is supported by chemical trapping experiments, which concomitantly demonstrate the utility of our method to access valuable -heterocycles. Additionally, our method can be used as a general strategy for synthesizing amides and amines, as well as N-labeled molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adq4980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!