Biofilms significantly impede the efficacy of conventional antimicrobial agents, particularly in multidrug-resistant (MDR) infections. In this work, we developed a size-adaptive, bismuth-based nanomicrobicide encapsulated with neutrophil membranes (BiS/SNP@CM), designed to selectively generate nitric oxide (NO) within acidic biofilms under near-infrared (NIR) irradiation. The nanomicrobicide's adaptive size ensures deeper biofilm penetration and accumulation, while the neutrophil membrane coating enhances biocompatibility and targeting at infection sites. Upon NIR irradiation, localized heating and NO release synergistically eradicate MDR biofilms. Furthermore, the interactions between the nanomicrobicide and glutathione, as well as the reactions between NO and ROS, disrupt the intracellular redox balance, further amplifying the antibacterial efficacy. This innovative design affords a promising nanomicrobicide for effectively treating MDR biofilm infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c06221 | DOI Listing |
Materials (Basel)
February 2025
School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily switch from pro-inflammatory M1 phenotypes to anti-inflammatory M2 phenotypes in response to different microenvironment stimuli.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
Among nanoparticle platforms, light or photoresponsive nanoparticles have emerged as a promising drug delivery strategy with spatiotemporal control while minimizing off-target effects. The characteristic absorption spectrum of the photoresponsive moiety dictates the wavelength of light needed to activate bond cleavage. However, the low tissue penetration depth limit and short-wavelength ultraviolet (UV) cellular toxicity are considered disadvantageous.
View Article and Find Full Text PDFBioconjug Chem
March 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
Near-infrared II (NIR-II) photoacoustic (PA)/photothermal imaging-guided tumor therapy holds great promise in precision medicine for cancer treatment. This work reports on the synthesis and application of an organic small molecule nanoagent that has exceptional PA and photothermal properties in the near-infrared region. BCy-TPE was constructed by linking an NIR-II absorbing cyanine dye BCy-Cl with a twisted tetraphenylethene unit.
View Article and Find Full Text PDFMacromol Rapid Commun
March 2025
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, Warsaw, 02-106, Poland.
This study explores the development of a photo-responsive bicomponent electrospun platform and its drug delivery capabilities. This platform is composed of two polymers of poly(lactide-co-glycolide) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Then, the platform is decorated with plasmonic gold nanostars (Au NSs) that are capable of on-demand drug release.
View Article and Find Full Text PDFJ Mater Chem B
March 2025
Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
The integration of second near-infrared (NIR-II) fluorescence imaging and photothermal therapy (PTT) achieved precise and efficient tumor treatment. BODIPY, a promising fluorescent dye, is widely used in biological fluorescence imaging due to its excellent optical properties and chemical stability. However, the excitation wavelengths of BODIPY typically range from 530 nm to 650 nm within the visible spectrum, which significantly limits tissue penetration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!