The vanadium redox flow battery (VRFB) is an attractive technique for renewable energy storage and output, and the proton exchange membrane is the vital component that determines battery performance. In this work, by incorporating sulfonated cellulose nanocrystals (SCNC)/MXene hybrids into a polymer matrix of poly vinylidene fluoride--hexafluoropropylene (PVDF-HFP), a proton exchange membrane was designed and fabricated, possessing a low vanadium permeability of 4.92 × 10 cm min, improved proton conductivity of 15.8 mS cm, and ion selectivity of 3.21 × 10 S min cm. The synergy between SCNC and the MXene nanosheet significantly elevates VRFB performance, yielding coulomb efficiency from 97.0% to 98.2%, voltage efficiency from 83.07% to 93.44%, and energy efficiency between 81.6% and 90.7% at a current density of 40-120 mA cm, which are better than those of the commercial Nafion 212 membrane. The SCNC/MXene/PVDF-HFP hybrid membrane presents comprehensive superior battery performances, positioning it as a promising candidate for proton exchange membranes in VRFBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c06246 | DOI Listing |
Langmuir
March 2025
China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:
Inhibition of demetalation due to electrochemical dissolution of metal active centers is a major challenge for the real-world commercialization of transition metals and nitrogen co-doped carbon (MNC) material catalysts. This research utilized a microchannel reactor to synthesize zeolitic imidazolate framework-8@zeolitic imidazolate framework-67, resulting in a CoZn/ZnNC material produced through a core-shell pyrolysis strategy. Direct synergistic interaction of CoZn alloy nanoparticles and ZnNC improves the activity and durability of the oxygen reduction reaction.
View Article and Find Full Text PDFLangmuir
March 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Biochemical and medical diagnostics are two main fields in which vortex generation in microfluidic devices has several applications. Therefore, the aim of the present endeavor is to investigate the characteristics of a non-Newtonian vortex under the influence of a pH-sensitive polyelectrolyte layer (PEL)-modulated electroosmotic effect in a microchannel. Additionally, it is considered that the bulk solution pH (pH) and ionic concentration of the solution influence the zeta potential.
View Article and Find Full Text PDFAdv Mater
March 2025
Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.
Iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE), but the linear scaling relationship (LSR) of multiple reaction intermediates binding inhibits the enhancement of its activity. Herein, the compressive strain and oxygen vacancy effect exists in iridium dioxide (IrO)-based catalyst by a doping engineering strategy for efficient acidic OER activity. In situ synchrotron characterizations elucidate that compressive strain can enhance Ir─O covalency and reduce the Ir─Ir bond distance, and oxygen vacancy (O) as an electronic regulator causes rapid adsorption of water molecules on the Ir and adjacent Ov (Ir─O) pair site to be coupled directly into O─O intermediates.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm 106 91, Sweden.
The dynamics of chemical reactions in solution are of paramount importance in fields ranging from biology to materials science. Because the hydrogen-bond network and proton dynamics govern the behavior of aqueous solutions, they have been the subject of numerous studies over the years. Here, we report the observation of a previously unknown associative state in the hydroxide ion that forms when a proton from a neighboring water molecule approaches the hydroxide ion, utilizing resonant inelastic soft X-ray scattering (RIXS) and quantum dynamical simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!