The co-evolution of epidemic and information spread within multilayer networks is a current hot topic in network science. During epidemic outbreaks, the accompanying information exhibits both outbreak and reception game behaviors; yet, these complex phenomena have been scarcely addressed in existing research. In this paper, we model information outbreaks using activated individuals who transmit messages to their neighbors, while also considering the game behaviors of information receivers. By focusing on these two factors, we establish a multilayer network model featuring both information outbreaks and reception games. Employing the microscopic Markov chain method, we analyze the propagation dynamics within this network and derive epidemic thresholds, corroborating these results with Monte Carlo simulations. Our findings indicate that information outbreaks suppress epidemic outbreaks, whereas increased costs of information reception promote epidemic spread. Smooth information dissemination further inhibits the transmission of the epidemic. Additionally, we observe that heterogeneity in the network structure between the virtual and physical layers reduces the ultimate scale of epidemic infection, with the virtual layer exerting a more substantial influence. These insights are crucial for elucidating the co-evolutionary mechanisms of spread within multilayer networks and for developing effective epidemic prevention and control strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0236359DOI Listing

Publication Analysis

Top Keywords

epidemic spread
12
multilayer networks
12
epidemic
9
outbreaks reception
8
reception games
8
spread multilayer
8
epidemic outbreaks
8
game behaviors
8
outbreaks
6
spread dynamics
4

Similar Publications

Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a highly pathogenic, drug-resistant, and transmissible "superbug" that causes infections in hospitals and communities. Because of the lack of effective antimicrobial treatment options, morbidity and mortality from CR-hvKP infections have increased dramatically, and outbreaks and the rapid spread of CR-hvKP in hospitals have become a major global public health challenge.

Methods: The mechanisms of molecular evolution in CR-hvKP include the acquisition of a hypervirulent plasmid encoding a virulence gene by carbapenemase-producing K pneumoniae, the horizontal transfer of plasmids carrying carbapenem resistance genes to hvKP, and the acquisition of fusion plasmids carrying both carbapenem resistance genes and hypervirulent genes by classic K pneumoniae.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections.

View Article and Find Full Text PDF

Background: COVID-19, caused by SARS-CoV-2, was first documented in Japan in January 2020. We previously reported an increased risk of rhinovirus infections among children during the early phase of the COVID-19 pandemic. Here, we assessed the impact of COVID-19 on respiratory virus infections after SARS-CoV-2 spread nationwide.

View Article and Find Full Text PDF

[Dengue fever vaccination Recommendations from the Société Francophone de Médecine Tropicale et de Santé Internationale for Metropolitan France and Overseas Territories].

Med Trop Sante Int

December 2024

Président de la SFMTSI, SFMTSI Société francophone de médecine tropicale et santé internationale (ancienne SPE), Hôpital Pitié-Salpêtrière, Pavillon Laveran, 47-83 Boulevard de l'Hôpital, 75651 Paris cedex 13, France.

Dengue fever is spreading rapidly around the world, affecting nearly half the world's population. Causes include urbanization, human mobility, climate change and the spread of mosquito vectors such as In 2023 and 2024, there was a marked increase in cases and deaths worldwide. In mainland France, the increase in imported cases has generated local transmissions.

View Article and Find Full Text PDF

Extreme drought events can impact human health, notably triggering epidemics that impose significant global health and economic burdens. Understanding these effects and developing response strategies is crucial. However, there is limited epidemiological evidence on how climate change influenced ancient epidemics before large-scale urbanization and frequent population movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!