The movement of a polymer is modeled by Brownian motion accompanied with a fluctuating diffusion coefficient when the polymer is in contact with a chemostatted monomer bath triggering the chain polymerization, which is called a diffusing diffusivity (DD) model. In this paper, we extend the DD model from three dimensional Euclidean space to a two dimensional spherical surface. The DD model on the spherical surface is described by a coupling Langevin system in the directions of longitude and latitude, while the diffusion coefficient is characterized by the birth and death chain. Then, the Fokker-Planck and Feynman-Kac equations for the DD model on the spherical surface, respectively, governing the probability density functions (PDFs) of the two statistical observables, position and functional, are derived. Finally, we use two ways to calculate the PDFs of some statistical observables, i.e., applying a Monte Carlo method to simulate the DD model and a spectral method to solve the Fokker-Planck and Feynman-Kac equations. In fact, the unification of the numerical results of the two ways also confirms the correctness of the built equations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0251095 | DOI Listing |
Nanomaterials (Basel)
March 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS composite was successfully synthesized using spherical MoS particles with lamellar self-assembly generated through the calcination method, followed by utilizing the "bridging effect" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS surface. The chemical composition and microstructure of the h-BN/MoS composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador.
Nanoparticles (NPs) have generated significant interest in various fields due to the unique properties that materials exhibit at the nanoscale. This study presents a comparative analysis of copper nanoparticles (Cu-NPs) and cobalt nanoparticles (Co-NPs) synthesized via conventional solvothermal and green hydrothermal synthesis using ethylene glycol and extract, respectively. The conventional solvothermal synthesis showed higher efficiency for both Cu-NPs and Co-NPs with yields of 32.
View Article and Find Full Text PDFInd Eng Chem Res
March 2025
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
This study introduces an eco-friendly approach to fabricating superstrong, core-shell, composite microcapsules, offering a sustainable alternative to traditional insoluble microplastic-based materials like melamine-formaldehyde. These microcapsules were engineered with a thick CaCO shell formed via crystal ripening in the presence of water-soluble poly(acrylic acid), encasing a hexylsalicylate oil core armored by hydrophilic SiO nanoparticles. An additional polydopamine layer was deposited via oxidative autopolymerization at pH 8.
View Article and Find Full Text PDFFront Chem
February 2025
South African Institute for Advanced Materials Chemistry, University of Western Cape, Cape Town, South Africa.
The conversion of carbon dioxide (CO), a major greenhouse gas, into light olefins is crucial for mitigating environmental impacts and utilizing non-petroleum-based feedstocks. Thermo-catalytic CO transformation into valuable chemicals offers a promising solution to this challenge. This study investigates the effect of potassium (K) and manganese (Mn) promoters on CO conversion and CH selectivity over CoFe-ZSM-5 zeolites.
View Article and Find Full Text PDFWater Environ Res
March 2025
Environmental Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Uncertainties in the quantification of microplastics in various products arise from the applied pretreatment processes. Road dust, a significant source of microplastics, requires precise quantification methods to ensure accuracy. In this study, we examined the impact of pretreatment processes on the accuracy of microplastic quantification in road dust, specifically focusing on tire rubber particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!