Sampling methods that are both scientifically rigorous and ethical are cornerstones of any experimental biological research. Since its introduction 30 years ago, the method of using plasticine prey to quantify predation pressure has become increasingly popular in biology. However, recent studies have questioned the accuracy of the method, suggesting that misinterpretation of predator bite marks and the artificiality of the models may bias the results. Yet, bias per se might not be a methodological issue as soon as its statistical distribution in the samples is even, quantifiable, and thus correctable in quantitative analyses. In this study, we focus on avian predation of lepidopteran larvae models, which is one of the most extensively studied predator-prey interactions across diverse ecosystems worldwide. We compared bird predation on plasticine caterpillar models to that on dead caterpillars of similar size and color, using camera traps to assess actual predation events and to evaluate observer accuracy in identifying predation marks a posteriori. The question of whether plasticine models reliably measure insectivorous bird predation remained unanswered, for two reasons: (1) even the evaluation of experienced observers in the posterior assessment of predation marks on plasticine models was subjective to some extent, and (2) camera traps failed to reflect predation rates as assessed by observers, partly because they could only record evidence of bird presence rather than actual predation events. Camera traps detected more evidence of bird presence than predation clues on plasticine models, suggesting that fake prey may underestimate the foraging activity of avian insectivores. The evaluation of avian predation on real caterpillar corpses was probably also compromised by losses to other predators, likely ants. Given the uncertainties and limitations revealed by this study, and in the current absence of more effective monitoring methods, it remains simpler, more cost-effective, ethical, and reliable to keep using plasticine models to assess avian predation. However, it is important to continue developing improved monitoring technologies to better evaluate and refine these methods in order to advance research in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884695PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308431PLOS

Publication Analysis

Top Keywords

plasticine models
20
camera traps
16
predation
13
bird predation
12
avian predation
12
models
8
reliably measure
8
actual predation
8
predation events
8
predation marks
8

Similar Publications

Sampling methods that are both scientifically rigorous and ethical are cornerstones of any experimental biological research. Since its introduction 30 years ago, the method of using plasticine prey to quantify predation pressure has become increasingly popular in biology. However, recent studies have questioned the accuracy of the method, suggesting that misinterpretation of predator bite marks and the artificiality of the models may bias the results.

View Article and Find Full Text PDF

It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed.

View Article and Find Full Text PDF

From Plastic Models to Virtual Reality Headsets: Enhancing Molecular Structure Education for Undergraduate Students.

Chimia (Aarau)

June 2024

Mahidol University International College, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand.

The comprehension of molecular structure is pivotal in chemistry education. Over the past decade, Mahidol University International College has employed various teaching tools for the introductory chemistry laboratory class. This paper outlines our evolutionary shift from traditional tools, such as plastic and plasticine models, to the integration of computer software, and ultimately to augmented reality (AR) and virtual reality (VR) tools-specifically, MoleculARweb and MolecularWebXR developed by École Polytechnique Fédérale de Lausanne researchers.

View Article and Find Full Text PDF

AbstractMany Neotropical beetles present coloration patterns mimicking red-eyed flies, which are presumably evasive mimicry models. However, the role of predators in selecting for evasive mimics in nature remains untested. In a field experiment, we used nontoxic plasticine replicas of a specialized fly-mimicking beetle species, which we placed on the host plants of the beetles.

View Article and Find Full Text PDF

Ecological Considerations When Designing Mitigation Translocations: An Australian Reptile Case Study.

Animals (Basel)

August 2023

Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia.

Translocation science has made considerable progress over the last two decades; however, reptile translocations still frequently fail around the world. Major knowledge gaps surround the basic ecology of reptile species, including basic factors such as habitat preference, which have a critical influence on translocation success. The western spiny-tailed skink () is used here as a case study to exemplify how empirical research can directly inform on-ground management and future translocation planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!