A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct roles of PV and Sst interneurons in visually induced gamma oscillations. | LitMetric

Distinct roles of PV and Sst interneurons in visually induced gamma oscillations.

Cell Rep

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands. Electronic address:

Published: March 2025

Gamma-frequency oscillations are a hallmark of active information processing and are generated by interactions between excitatory and inhibitory neurons. To examine the contribution of distinct inhibitory interneurons to visually induced gamma oscillations, we recorded from optogenetically identified PV+ (parvalbumin) and Sst+ (somatostatin) interneurons in mouse primary visual cortex (V1). PV and Sst inhibitory interneurons exhibited distinct correlations to gamma oscillations. PV cells were strongly phase locked, while Sst cells were weakly phase locked, except for narrow-waveform Sst cells. PV cells fired at a substantially earlier phase in the gamma cycle (≈6 ms) than Sst cells. PV cells fired shortly after the onset of tightly synchronized burst events in excitatory cells, while Sst interneurons fired after subsequent burst spikes or single spikes. These findings indicate a main role of PV interneurons in synchronizing network activity and suggest that PV and Sst interneurons control the excitability of somatic and dendritic neural compartments with precise time delays coordinated by gamma oscillations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.115385DOI Listing

Publication Analysis

Top Keywords

gamma oscillations
16
sst interneurons
12
sst cells
12
interneurons visually
8
visually induced
8
induced gamma
8
inhibitory interneurons
8
phase locked
8
cells cells
8
cells fired
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!