Protocol to modulate SUMOylation of a specific protein in budding yeast using chemical genetic approaches.

STAR Protoc

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA. Electronic address:

Published: March 2025

SUMOylation (small ubiquitin-like modifier) is a ubiquitous and highly dynamic posttranslational modification. Here, we present a protocol to alter the local SUMOylation landscape of target proteins in budding yeast Saccharomyces cerevisiae using chemical genetic tools. We describe steps for recruiting SUMO enzymes (Ulp1 or Ubc9) to GFP-tagged proteins using GBP (GFP-binding protein)-fusion proteins. We then detail procedures for inducing SUMO conjugation/deconjugation and the subsequent SUMOylation analysis. For complete details on the use and execution of this protocol, please refer to Gutierrez-Morton et al..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xpro.2025.103675DOI Listing

Publication Analysis

Top Keywords

budding yeast
8
chemical genetic
8
protocol modulate
4
sumoylation
4
modulate sumoylation
4
sumoylation specific
4
specific protein
4
protein budding
4
yeast chemical
4
genetic approaches
4

Similar Publications

Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses.

View Article and Find Full Text PDF

Background: This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.

View Article and Find Full Text PDF

Reptiles may act as reservoirs or spreaders of potential pathogenic microorganisms including Candida yeasts. While the epidemiology of yeast species has been thoroughly studied, the virulence profile of isolated species is not well investigated. Therefore, this study aimed to assess the haemolytic, phospholipase, lipase activities and biofilm formation of yeasts isolated from the cloacal swabs of venomous snakes from Marrakech, Morocco (Group I, n = 40) and from non-venomous snakes from Cocullo, Italy (Group II, n = 32).

View Article and Find Full Text PDF

An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation.

Appl Microbiol Biotechnol

March 2025

Department of Agricultural, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Canada.

Advances in the ethanol fermentation process are essential to improving the performance of bioethanol production. Fed-batch fermentation is a promising approach to increase the final ethanol titer, which benefits the recovery in the bioethanol industry's downstream process. However, the development of feeding strategies, a crucial control variable in the fed-batch approach, is limited.

View Article and Find Full Text PDF

Background: Candida auris is an emerging fungal pathogen that is often multidrug-resistant. It can persist on skin and in hospital environments, leading to outbreaks and severe infections for patients at risk. Several countries and institutions are working on establishing guidelines and recommendations for prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!