Near-Infrared Phosphorescent Silver Nanoclusters/Polyethylenimine Nanocomposites for Photothermal Conversion.

ACS Appl Mater Interfaces

National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Published: March 2025

Emerging as a promising functional material, metal nanoclusters that emit near-infrared (NIR) radiation have garnered significant attention due to their distinctive properties. Nonetheless, the rational design of NIR-emissive metal nanoclusters still faces substantial challenges. Herein, we demonstrate a self-assembly strategy for constructing NIR-emissive nanocomposites (abbreviated as ) using water-soluble Ag-NCs (Ag(mba), where Hmba = 2-mercaptobenzoic acid) and branched polyethylenimine (PEI) ( = 750,000). The exhibits excellent phosphorescent properties, demonstrating a broad NIR phosphorescence band spanning from 750 to 1200 nm (NIR: >750 nm) and three-component microsecond lifetimes (τ = 2.22 μs; τ = 33.31 μs; τ = 230.76 μs) at room temperature. This behavior is attributed to the incorporation of three triplet emitting states, as verified by temperature-dependent steady/transient emission spectra and time-resolved transient emission spectra (TRES). More importantly, the nanocomposite also demonstrates exceptional photothermal conversion properties, with the temperature elevating promptly from 22 to 310 °C within just 10 s upon 660 nm laser irradiation (0.8 W/cm). The notable phosphorescence, especially in the NIR region, is rarely observed in silver cluster nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c00621DOI Listing

Publication Analysis

Top Keywords

photothermal conversion
8
metal nanoclusters
8
emission spectra
8
near-infrared phosphorescent
4
phosphorescent silver
4
silver nanoclusters/polyethylenimine
4
nanoclusters/polyethylenimine nanocomposites
4
nanocomposites photothermal
4
conversion emerging
4
emerging promising
4

Similar Publications

Foam materials hold great promise in construction and packaging applications. However, the non-biodegradability and poor thermal stability of petroleum-based foams present serious environmental and safety concerns. It is crucial to develop sustainable, eco-friendly foam fabrication methods that balance environmental responsibility with high performance.

View Article and Find Full Text PDF

Molecular Engineering of a SICTERS Small Molecule with Superior Raman Imaging and Photothermal Performance.

J Am Chem Soc

March 2025

Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.

View Article and Find Full Text PDF

Electricity-Efficient On-Demand Photothermal Activation for Tunable Thermochromic Windows.

Nano Lett

March 2025

National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.

Thermochromic (TC) windows with passively controlled sunlight regulation have demonstrated significant building energy conservations. Realizing the active control of the TC window can expand its popularity while remaining an intractable challenge. Herein, a low-power-dissipative strategy that endows TC windows with an actively tunable transmittance is presented through the electro-induced tunable photothermal conversions (ETPCs).

View Article and Find Full Text PDF

The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics.

View Article and Find Full Text PDF

Exceptional Near-Infrared II Organic Small Molecule Nanoagent for Photoacoustic/Photothermal Imaging-Guided Highly Efficient Therapy in Cancer.

Bioconjug Chem

March 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.

Near-infrared II (NIR-II) photoacoustic (PA)/photothermal imaging-guided tumor therapy holds great promise in precision medicine for cancer treatment. This work reports on the synthesis and application of an organic small molecule nanoagent that has exceptional PA and photothermal properties in the near-infrared region. BCy-TPE was constructed by linking an NIR-II absorbing cyanine dye BCy-Cl with a twisted tetraphenylethene unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!