The advent of evanescent field based fiber optic biosensor and advancements in nanotechnology has create an excellent opportunity in label-free detection of biomarkers which plays vital role in the early, rapid and accurate diagnosis of acute diseases. In this work, we demonstrate a high sensitive Molybdenum Tungsten Disulfide (MoWS2) coated side polished fiber (SPF) biosensor for accurate and early diagnosis of cardio vascular disease (CVD). The Cardiac Troponins I (cTnI) is identified as a biomarker of interest for early and rapid diagnonis of CVD. The proposed SPF biosensor exhibits surface plasmonic resonance (SPR) detection due to the evanescent field interaction between MoWS2 nano coated side polished region and anti-CTnI. The proposed SPF biosensor possess the high sensitivity of 82% to detect the cTnI antibody with a limit of detection (LOD) about 17.5 pg/mL. The peak SPR shift have been calculated as 61 nm for analyte concentrations of 500 pg/mL Moreover, the proposed SPF biosensor possess the high degree of selectivity and environmental stability to CTnI among three analytes such as CTnI, Estrogen and Glucose. The hydrophobic interactions of MoWS2 and cTnI antibody leads to chemical free biofunctionalization of antibody in the sensing region. Hence, the simulation results shows the surface interaction strength calculated as 1.29 KJ mol/nm in order to evaluate the hydrophobic interactions. Thus, the proposed optical biosensor is a promising candidate for "point-of-care" testing of CVD disorders and preclinical assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2025.3548823DOI Listing

Publication Analysis

Top Keywords

spf biosensor
16
coated side
12
side polished
12
proposed spf
12
high sensitive
8
polished fiber
8
evanescent field
8
early rapid
8
biosensor possess
8
possess high
8

Similar Publications

The advent of evanescent field based fiber optic biosensor and advancements in nanotechnology has create an excellent opportunity in label-free detection of biomarkers which plays vital role in the early, rapid and accurate diagnosis of acute diseases. In this work, we demonstrate a high sensitive Molybdenum Tungsten Disulfide (MoWS2) coated side polished fiber (SPF) biosensor for accurate and early diagnosis of cardio vascular disease (CVD). The Cardiac Troponins I (cTnI) is identified as a biomarker of interest for early and rapid diagnonis of CVD.

View Article and Find Full Text PDF

Direct electronical readout of surface plasmon resonance biosensor enabled by on-fiber Graphene/PMMA photodetector.

Biosens Bioelectron

March 2025

Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, 510632, PR China; Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, PR China. Electronic address:

Surface plasmon resonance (SPR) optical fiber sensors are appealing for biomolecular detection due to their inherent characteristics such as flexibility, real-time performance, and high sensitivity. Concurrently, incorporating SPR sensors into wearable devices has emerged as a significant strategy. However, the majority of traditional SPR optical fiber sensors utilize spectrometers for optical readout, which leads to a relatively bulky overall size of the sensing system.

View Article and Find Full Text PDF

In this study, the surface plasmon resonance (SPR)-enhanced fluorescence properties of gold quantum dots (AuQDs) on an aluminum (Al)-coated polydimethylsiloxane (PDMS) grating substrate were investigated by changing the grating pitch mechanical stretching. The SPR-excitation wavelength of the AuQDs/Al-coated PDMS-grating substrate was tuned by changing the incident light angle from 5° to 60° and stretching it from 0 to 1.0 mm.

View Article and Find Full Text PDF

An iEEG Recording and Adjustable Shunt-Current Conduction Platform for Epilepsy Treatment.

Biosensors (Basel)

April 2022

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, Beijing 100190, China.

This paper proposes a compact bioelectronics sensing platform, including a multi-channel electrode, intracranial electroencephalogram (iEEG) recorder, adjustable galvanometer, and shunt-current conduction circuit pathway. The developed implantable electrode made of polyurethane-insulated stainless-steel materials is capable of recording iEEG signals and shunt-current conduction. The electrochemical impedance of the conduction, ground/reference, and working electrode were characterized in phosphate buffer saline solution, revealing in vitro results of 517.

View Article and Find Full Text PDF

Mesoporous One-Component Gold Microshells as 3D SERS Substrates.

Biosensors (Basel)

October 2021

School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

Surface-enhanced Raman scattering (SERS) is a powerful analytical tool for label-free analysis that has found a broad spectrum of applications in material, chemical, and biomedical sciences. In recent years, a great interest has been witnessed in the rational design of SERS substrates to amplify Raman signals and optionally allow for the selective detection of analytes, which is especially essential and challenging for biomedical applications. In this study, hard templating of noble metals is proposed as a novel approach for the design of one-component tailor-made SERS platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!