Systematic identification of allosteric effectors in metabolism.

Proc Natl Acad Sci U S A

Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich 8093, Switzerland.

Published: March 2025

Recent physical binding screens suggest that protein-metabolite interactions are more extensive than previously recognized. To elucidate the functional relevance of these interactions, we developed a mass spectrometry-based screening method for higher throughput in vitro enzyme assays. By systematically quantifying the effects of 79 metabolites on the activity of 20 central enzymes, we not only assess functional relevance but also gauge the depth of the current understanding of regulatory interactions within one of the best-characterized networks. Our identification of 50 inhibitors and 14 activators not only expands the range of known input signals but also uncovers novel regulatory logic. For instance, we observed that AMP inhibits malic enzyme to safeguard the cyclic operation of the tricarboxylic acid cycle, and erythrose-4-phosphate inhibits 6-phosphogluconate dehydrogenase to redirect flux from the pentose phosphate pathway into the Entner-Doudoroff pathway. Discrepancies between our standardized assays and existing database entries suggest that many previously reported interactions might occur only under specific, often nonphysiological conditions. Our dataset represents a systematically determined functional protein-metabolite interaction network, establishing a baseline for allosteric regulation in central metabolism. These results enhance our understanding of the regulatory logic governing metabolic processes and underscore its significance in cellular adaptation and growth.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2423767122DOI Listing

Publication Analysis

Top Keywords

functional relevance
8
understanding regulatory
8
regulatory logic
8
systematic identification
4
identification allosteric
4
allosteric effectors
4
effectors metabolism
4
metabolism physical
4
physical binding
4
binding screens
4

Similar Publications

Effectiveness of Grief Camps in Supporting Bereaved Individuals: A Systematic Review.

Omega (Westport)

March 2025

Centre for Mental Health and Community Wellbeing, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia.

Experiencing the death of a loved one is a stressful and disruptive event that can have short-term and long-term detrimental effects on the grief, mental health, and social functioning of the bereaved individuals. Grief camps represent a relatively novel form of support. However, little is known about their effectiveness.

View Article and Find Full Text PDF

Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells.

J Immunol

January 2025

Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.

View Article and Find Full Text PDF

Congenital cytomegalovirus (cCMV) is the leading infectious cause of neonatal neurological impairment worldwide, but the viral factors enabling vertical spread across the placenta remain undetermined. The pentameric complex (PC), composed of the subunits gH/gL/UL128/UL130/UL131A, has been demonstrated to be important for entry into nonfibroblast cells in vitro. These findings link the PC to broad cell tropism and virus dissemination in vivo, denoting all subunits as potential targets for intervention strategies and vaccine development.

View Article and Find Full Text PDF

Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!