Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Die-forging structural parts are widely used in the main load-bearing components of aircrafts because of their excellent mechanical properties and fatigue resistance. However, the forming and heat treatment processes of die-forging structural parts are complex, leading to high levels of internal stress and a complex distribution of residual stress fields (RSFs), which affect the deformation, fatigue life, and failure of structural parts throughout their lifecycles. Hence, the global RSF can provide the basis for process control. The existing RSF inference method based on deformation force data can utilize monitoring data to infer the global RSF of a regular part. However, owing to the irregular geometry of die-forging structural parts and the complexity of the RSF, it is challenging to solve ill-conditioned problems during the inference process, which makes it difficult to obtain the RSF accurately. This paper presents a global RSF inference method for the die-forging structural parts based on the fusion of monitoring data and distribution prior. Prior knowledge was derived from the RSF distribution trends obtained through finite element analysis. This enables the low-dimensional characterization of the RSF, reducing the number of parameters required to solve the equations. The effectiveness of this method was validated in both simulation and actual environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885777 | PMC |
http://dx.doi.org/10.1186/s42492-025-00187-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!