Mitochondrial dysfunction plays a crucial role in the pathogenesis of Parkinson's disease (PD), yet therapeutic strategies targeting mitochondrial function remain limited. Exercise has shown neuroprotective benefits in PD, but the underlying mechanisms are not fully understood. This study aimed to investigate how exercise affects MPTP-induced excessive apoptosis, mitochondrial fission, and mitochondrial function in PD mice, with a focus on the Irisin/AMPK/SIRT1 pathway. Thirty-two male C57BL/6 J mice, aged 7-8 weeks, were randomly assigned to control (n = 8) and experimental groups (n = 24). Mice in the experimental groups were administered intraperitoneal injections of MPTP to induce the PD model. Subsequently, the experimental mice were divided into three groups (8 mice in each group): the sedentary group (PD), the group subjected to 10 weeks of treadmill exercise (PDEX), and the group receiving both treadmill exercise and Irisin antagonist injections (EXRG). Upon completion of the 10-week intervention, behavioral assessments were performed. Following this, the mice were euthanized to collect brain samples and subjected to immunohistochemistry, immunofluorescence, ELISA, citrate synthase assay, and Western blot analyses. MPTP-treated mice exhibited significant motor dysfunction and dopaminergic neuron loss in the nigrostriatal regions, which were alleviated after a 10-week exercise intervention. Exercise significantly reduced MPTP-induced neuronal apoptosis, as evidenced by decreased cellular debris and abnormal nuclear morphology, increased Bcl-2 protein levels, and decreased BAX expression. Furthermore, exercise mitigated abnormal mitochondrial fission in PD mice and improved mitochondrial function-related markers. This was reflected by reduced immunohistochemical signals and protein expression levels of Drp1, Fis1, and MFF, as well as increased citrate synthase activity and elevated expression levels of COX-I and COX-IV. In the substantia nigra of PD mice, the expression levels of Irisin, p-AMPK, and SIRT1 were reduced but were notably elevated after the 10-week exercise intervention. However, chronic treatment with Cyclo RGDyk to block Irisin signaling potentially counteracted the exercise-induced increases in p-AMPK and Sirt1 expression. Moreover, blocking the Irisin signaling pathway reversed the beneficial effects of exercise on mitochondrial fission, mitochondrial function, and neuronal apoptosis. Exercise is an effective approach for alleviating PD pathology by reducing excessive mitochondrial fission, dysregulated mitochondrial respiration and metabolism, and neuronal loss. The neuroprotective effects of exercise are achieved, in part, by regulating the Irisin/AMPK/SIRT1 signaling pathway. This study underscores the potential of targeting Irisin signaling as a therapeutic strategy of exercise to enhance mitochondrial function and promote neuronal survival in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-025-04801-z | DOI Listing |
Cells
February 2025
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies.
View Article and Find Full Text PDFActa Physiol (Oxf)
April 2025
Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
Aim: Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.
Background: Microenvironmental alterations induce significant genetic and epigenetic changes in stem cells. Mitochondria, essential for regenerative capabilities, provide the necessary energy for stem cell function. However, the specific roles of histone modifications and mitochondrial dynamics in human adipose-derived stem cells (ASCs) during morphological transformations remain poorly understood.
View Article and Find Full Text PDFTalanta
March 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. Electronic address:
Lipid metabolism is closely related to various biological processes in cells. The accumulation of Lipid droplets (LDs) is a typical manifestation of certain metabolic diseases, such as mitochondrial myopathy, which shows a significant increase in LDs. The accumulation of LDs can exacerbate the progression of disease, and lysosomes selectively degrade LDs to cope with this phenomenon.
View Article and Find Full Text PDFInt Immunopharmacol
March 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, PR China. Electronic address:
Metformin(Met) and adipose-derived stem cell exosomes(ADSCs-Exo) both demonstrate therapeutic effects on mitochondrial dysfunction and pyroptosis. There is also a phenomenon of mutual promotion between these two pathological states. The synergistic effect of metformin-loaded exosomes (Met-Exo) via electroporation in a miniature pig liver ischemia-reperfusion injury (IRI) model remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!