The Effect of Through-Silicon-Via Thermal Stress on Metal-Oxide-Semiconductor Field-Effect Transistor Properties Under Cooling to Ultra-Low Temperatures.

Micromachines (Basel)

Key Laboratory of Functional Materials and Applications of Fujian Province, School of Material Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.

Published: February 2025

The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases in temperature, and its temperature range is concentrated between 173 and 573 K. By employing finite element analysis and a device simulation method based on temperature-dependent material properties, the impact of TTSV thermal stress on metal-oxide-semiconductor field-effect transistor (MOSFET) properties is investigated under cooling down from room temperature to the ultra-low temperature (20 mK), where the magnitude of thermal stress in TTSV is closely associated with the TTSV diameter and results in significant tension near the Cu-Si interface and consequently increasing the likelihood of delamination and cracking. Considering the piezoresistive effect of the Si substrate, both the TTSV diameter and the distance between TTSV and MOSFET are found to have more pronounced effects on electron mobility along [100] crystal orientation and hole mobility along [110] crystal orientation. Applying a gate voltage of 3 V, the saturation current for the 45 nm-NMOS transistor oriented along channel [100] experiences a variation as high as 34.3%. Moreover, the TTSV with a diameter of 25 μm generates a change in MOSFET threshold voltage up to -56.65 mV at a distance as short as 20 μm. The influences exerted by the diameter and distance are consistent across carrier mobility, saturation current, and threshold voltage parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857664PMC
http://dx.doi.org/10.3390/mi16020221DOI Listing

Publication Analysis

Top Keywords

thermal stress
20
ttsv diameter
12
stress metal-oxide-semiconductor
8
metal-oxide-semiconductor field-effect
8
field-effect transistor
8
ttsv
8
diameter distance
8
crystal orientation
8
saturation current
8
threshold voltage
8

Similar Publications

Enhanced Tumor Ablation and Immune Activation Via Irreversible Electroporation and Functionalized Vermiculite Nanosheets.

Small

March 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

Harnessing Magnetic Properties for Precision Thermal Control of Vortex Domain Walls in Constricted Nanowires.

Nanomaterials (Basel)

February 2025

Department of Basic and Applied Sciences, A'Sharqiyah University, P.O. Box 42, Ibra 400, Oman.

This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry.

View Article and Find Full Text PDF

A significant portion of adolescents suffer from mental illnesses and persistent pain due to repeated stress. The components of the nervous system that link stress and pain in early life remain unclear. Prior studies in adult mice implicated the innate immune system, specifically Toll-like receptors (TLRs), as critical for inducing long-term anxiety and pain-like behaviors in social defeat stress (SDS) models.

View Article and Find Full Text PDF

The lipid profiles in raw fat (RF) and thermal-extracted fat (TF) from yak under hydroxyl radical-induced oxidative stress were investigated. Both hydroxyl radical and thermal extraction accelerated lipid oxidation. A total of 1168 lipids were identified and classified into 18 lipid categories.

View Article and Find Full Text PDF

A quality by design (QbD)-based high-resolution, stability-indicating high-performance liquid chromatography (HPLC) method was developed for determining impurities in loperamide hydrochloride (LPH) tablet dosage forms. Using this method, eight known impurities were qualified, and three degradants were quantified with excellent peak resolution. Mobile Phase-A consisted of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!