The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases in temperature, and its temperature range is concentrated between 173 and 573 K. By employing finite element analysis and a device simulation method based on temperature-dependent material properties, the impact of TTSV thermal stress on metal-oxide-semiconductor field-effect transistor (MOSFET) properties is investigated under cooling down from room temperature to the ultra-low temperature (20 mK), where the magnitude of thermal stress in TTSV is closely associated with the TTSV diameter and results in significant tension near the Cu-Si interface and consequently increasing the likelihood of delamination and cracking. Considering the piezoresistive effect of the Si substrate, both the TTSV diameter and the distance between TTSV and MOSFET are found to have more pronounced effects on electron mobility along [100] crystal orientation and hole mobility along [110] crystal orientation. Applying a gate voltage of 3 V, the saturation current for the 45 nm-NMOS transistor oriented along channel [100] experiences a variation as high as 34.3%. Moreover, the TTSV with a diameter of 25 μm generates a change in MOSFET threshold voltage up to -56.65 mV at a distance as short as 20 μm. The influences exerted by the diameter and distance are consistent across carrier mobility, saturation current, and threshold voltage parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857664 | PMC |
http://dx.doi.org/10.3390/mi16020221 | DOI Listing |
Small
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Basic and Applied Sciences, A'Sharqiyah University, P.O. Box 42, Ibra 400, Oman.
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry.
View Article and Find Full Text PDFCells
February 2025
Department of Anesthesiology, University of California, San Diego, CA 92093, USA.
A significant portion of adolescents suffer from mental illnesses and persistent pain due to repeated stress. The components of the nervous system that link stress and pain in early life remain unclear. Prior studies in adult mice implicated the innate immune system, specifically Toll-like receptors (TLRs), as critical for inducing long-term anxiety and pain-like behaviors in social defeat stress (SDS) models.
View Article and Find Full Text PDFFood Chem X
February 2025
School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China.
The lipid profiles in raw fat (RF) and thermal-extracted fat (TF) from yak under hydroxyl radical-induced oxidative stress were investigated. Both hydroxyl radical and thermal extraction accelerated lipid oxidation. A total of 1168 lipids were identified and classified into 18 lipid categories.
View Article and Find Full Text PDFBiomed Chromatogr
April 2025
Cambrex High Point, High Point, North Carolina, USA.
A quality by design (QbD)-based high-resolution, stability-indicating high-performance liquid chromatography (HPLC) method was developed for determining impurities in loperamide hydrochloride (LPH) tablet dosage forms. Using this method, eight known impurities were qualified, and three degradants were quantified with excellent peak resolution. Mobile Phase-A consisted of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!