Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micromachines (Basel)
The Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
Published: February 2025
Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857280 | PMC |
http://dx.doi.org/10.3390/mi16020196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.