Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper examined the reliability of complex PCB assemblies under random vibration and temperature cycling, which are two primary causes of assembly failure. A combination of finite element simulation and environmental testing was employed to investigate the effects of different reinforcement methods and solder joint morphology on assembly reliability. The linear accumulation of damage was utilized to predict assembly failure, and the predicted failure damage was compared with the damage extracted post-testing to validate the simulation analysis. The results indicate that SAC305 solder exhibits greater strength than Sn63Pb37 solder in withstanding temperature cycling fatigue, yet is weaker than Sn63Pb37 solder in withstanding random vibration fatigue. When the solder is Sn63Pb37, the temperature cycling life of the assembly with the bottom filled and the corners fixed is reduced by 92.3% and 99.3%, respectively, compared to the unreinforced method, while the random vibration life is enhanced by 84 times and 3.9 times, respectively. An increase in pad diameter is advantageous for improving the random vibration life of the assembly, but results in a decrease in the temperature cycling life. When the lower pad diameter ranges from 0.35 mm to 0.55 mm, the assembly temperature cycling life decreases by 28.83%, 82.03%, 90.66%, and 91.22% with the increase of the lower pad diameter, and the random vibration life improves by 4.8 times, 9.5 times, 20.4 times, and 33.6 times, respectively. The predicted locations of vulnerable solder joints for the assembly are consistent with the experimental results, and the failure prediction accuracy of the assembly is 88.89%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857232 | PMC |
http://dx.doi.org/10.3390/mi16020212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!