Microfluidic devices are greatly affected by the materials used. The materials used in previous studies had problems in various aspects, such as processing, adsorption, and price. This study will investigate the materials needed to overcome such problems. Various microfluidic devices based on the perfluorinated compound perfluoropolyether (PFPE) were fabricated and mixed with hydrophilic and amphiphilic monomers, including poly(ethylene glycol) diacrylate, polyethylene glycol monomethacrylate, poly(ethylene glycol) methyl ether methacrylate, acrylic acid, and 2-hydroxyethyl methacrylate. A PFPE-based sheet with a repeating structure of hydrophobic and hydrophilic groups was fabricated. Thus, the hydrophilicity of highly hydrophobic PFPE was enhanced. The fluidic channel was engraved on a PFPE-based sheet using laser cutting and a fabricated microfluidic device. The channels of microfluidic devices are micro-scale (100 µm~300 µm). The lipid nanoparticles and droplets generated through the microfluidic device demonstrated uniform particles continuously.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857771 | PMC |
http://dx.doi.org/10.3390/mi16020179 | DOI Listing |
Nanomaterials (Basel)
February 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications.
View Article and Find Full Text PDFLab Chip
March 2025
LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France.
Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices.
View Article and Find Full Text PDFJ Transl Med
March 2025
School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
Background: Endothelial dysfunction is a hallmark feature of cardiovascular disease (CVD), yet the underlying mechanisms are still poorly understood. This has impeded the development of effective therapies, particularly for peripheral artery disease. FK506-binding protein like (FKBPL) and its therapeutic peptide mimetic, AD-01, are crucial negative regulators of angiogenesis, however their roles in CVD are unknown.
View Article and Find Full Text PDFLangmuir
March 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Biochemical and medical diagnostics are two main fields in which vortex generation in microfluidic devices has several applications. Therefore, the aim of the present endeavor is to investigate the characteristics of a non-Newtonian vortex under the influence of a pH-sensitive polyelectrolyte layer (PEL)-modulated electroosmotic effect in a microchannel. Additionally, it is considered that the bulk solution pH (pH) and ionic concentration of the solution influence the zeta potential.
View Article and Find Full Text PDFCancer Immunol Res
March 2025
Seoul National University, Seoul, Korea (South), Republic of.
Cytotoxic chemotherapy that kills cancer cells can also elicit anti-tumor immune responses. Therefore, understanding the immunogenic context of cytotoxic chemotherapy can improve combination immunotherapies. In this study, we sought to improve our understanding about dendritic cell (DC) dynamics in cytotoxic chemotherapy-treated tumor tissues by developing 3D microfluidic devices that enable high-resolution visualization of cellular dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!