Step emulsification (SE) is renowned for its robustness in generating monodisperse emulsion droplets at arrayed nozzles. However, few studies have explored poly(dimethylsiloxane) (PDMS)-based SE devices for producing monodisperse oil-in-water (O/W) droplets and polymeric microspheres with diameters below 20 µm-materials with broad applicability. In this study, we present a PDMS-based microfluidic SE device designed to achieve this goal. Two devices with 264 nozzles each were fabricated, featuring straight and triangular nozzle configurations, both with a height of 4 µm and a minimum width of 10 µm. The devices were rendered hydrophilic via oxygen plasma treatment. A photocurable acrylate monomer served as the dispersed phase, while an aqueous polyvinyl alcohol solution acted as the continuous phase. The straight nozzles produced polydisperse droplets with diameters exceeding 30 µm and coefficient-of-variation (CV) values above 10%. In contrast, the triangular nozzles, with an opening width of 38 µm, consistently generated monodisperse droplets with diameters below 20 µm, CVs below 4%, and a maximum throughput of 0.5 mL h. Off-chip photopolymerization of these droplets yielded monodisperse acrylic microspheres. The low-cost, disposable, and scalable PDMS-based SE device offers significant potential for applications spanning from laboratory-scale research to industrial-scale particle manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857107 | PMC |
http://dx.doi.org/10.3390/mi16020132 | DOI Listing |
Micromachines (Basel)
January 2025
Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
Step emulsification (SE) is renowned for its robustness in generating monodisperse emulsion droplets at arrayed nozzles. However, few studies have explored poly(dimethylsiloxane) (PDMS)-based SE devices for producing monodisperse oil-in-water (O/W) droplets and polymeric microspheres with diameters below 20 µm-materials with broad applicability. In this study, we present a PDMS-based microfluidic SE device designed to achieve this goal.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2025
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:
Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.
Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.
J Chem Phys
November 2024
Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
J Liposome Res
October 2024
Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan.
Giant liposomes, or giant unilamellar vesicles (GUVs), have been utilized as cell-size bioreactors to replicate the physical and chemical properties of biological cells. However, conventional methods for preparing GUVs typically lack precise control over their size. Several research groups have recently developed microfluidic techniques to create monodisperse GUVs by generating water-in-oil-in-water (W/O/W) droplets with a thin oil layer that subsequently transform into GUVs.
View Article and Find Full Text PDFLab Chip
October 2024
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!