A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Validation of an Electronic Health Record-Based, Pediatric Acute Respiratory Distress Syndrome Subphenotype Classifier Model. | LitMetric

Objective: To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learning.

Design: Retrospective, exploratory analysis using data from 2014 to 2022.

Setting: Single-center quaternary care PICU.

Patients: Two temporally distinct cohorts of PARDS patients, 2014-2019 and 2019-2022.

Interventions: None.

Measurements And Main Results: Patients in the derivation cohort (n = 333) were assigned to hyperinflammatory or hypoinflammatory subphenotypes using biomarkers and latent class analysis. A machine learning model was trained on 165 EHR-derived variables to identify subphenotypes. The most important variables were selected for inclusion in a parsimonious model. The model was validated in a separate cohort (n = 114). The EHR-based classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.93 (95% CI, 0.87-0.98), with a sensitivity of 88% and specificity of 83% for determining hyperinflammatory PARDS. The parsimonious model, using only five laboratory values, achieved an AUC of 0.92 (95% CI, 0.86-0.98) with a sensitivity of 76% and specificity of 87% in the validation cohort.

Conclusions: This proof-of-concept study demonstrates that biomarker-based PARDS subphenotypes can be identified using EHR data at 24 hours of PARDS diagnosis. Further validation in larger, multicenter cohorts is needed to confirm the clinical utility of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PCC.0000000000003709DOI Listing

Publication Analysis

Top Keywords

electronic health
8
pediatric acute
8
acute respiratory
8
respiratory distress
8
distress syndrome
8
hyperinflammatory hypoinflammatory
8
pards subphenotypes
8
ehr data
8
parsimonious model
8
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!