The cell membrane is a crucial biological interface to consider in biomedical research, as a significant proportion of drugs interacts with this barrier. While understanding membrane-drug interactions is important, existing platforms for drug screening predominantly focus on interactions with whole cells or tissues. This preference is partly due to the instability of membrane-based systems and the technical challenges associated with buffer replacement around lipid membranes formed on microfluidic chips. Here, we introduce a novel microfluidic design capable of forming stable freestanding lipid bilayers with efficient replacement of the media in their local environment for molecular delivery to the membrane. With the use of bubble traps and resistance channels, we achieved sufficient hydrodynamic control to maintain membrane stability during the membrane formation and the molecular delivery phases. As a proof of concept, we successfully formed 1-palmitoyl-2-oleoyl--3-phosphocholine (POPC) bilayers on the chip and delivered the antibiotic azithromycin at low (5 μM) and high (250 μM) doses. Using optical tweezers, we characterized how azithromycin influenced the membrane elastic properties, including tension and bending rigidity. This microfluidic device is a versatile tool that can deliver various buffers, molecules or nano-/microparticles to freestanding membranes, and study the resulting impact on the membranes' properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4lc00930d | DOI Listing |
Anesthesiology
March 2025
Professor of Anesthesiology and Perioperative Medicine, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium; Professor, Department of Anesthesiology, UZLeuven, Leuven, Belgium & Department of Cardiovascular Sciences, KULeuven, Leuven, Belgium; Staff anesthesiologist, Department of Anesthesiology, OLV Hospital, Aalst, Belgium.
Background: The use of capturing devices may become required for the continued use desflurane. We tested the percentage of desflurane captured by a charcoal filter (CONTRAfluran)-workstation (Aisys) combination in vitro.
Methods: Desflurane in O2/air was administered via an Aisys workstation into a 2 L test lung that was insufflated with CO2 (160 mL/min).
Proc Natl Acad Sci U S A
March 2025
Department of Biochemistry, University of Washington, Seattle, WA 98195.
The cytoskeleton is crucial for cell organization and movement. In Eukaryotes, it largely consists of the protein actin, that forms a double-stranded linear filamentous structure in the presence of ATP and disassemble upon ATP hydrolysis. Bacteria also possess actin homologs, that drive fundamental cellular processes, including cell division, shape maintenance, and DNA segregation.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
March 2025
School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies.
View Article and Find Full Text PDFDrug Deliv Transl Res
March 2025
Regenerative Medicine & Cellular Therapies Division, School of Pharmacy, The University of Nottingham Biodiscovery Institute (BDI), University of Nottingham, Nottingham, NG7 2RD, UK.
Topically applied therapies must not only be effective at the molecular level but also efficiently access the target site which can be on milli/centimetre-scales. This bottleneck is particularly inhibitory for peptide and nucleic acid macromolecule drug delivery strategies, especially when aiming to target wounded, infected, and poorly perfused tissues of significant volume and geometry. Methods to drive fluid-flow or to enhance physical distribution of such formulations after local administration in accessible tissues (skin, eye, intestine) would be transformative in realizing the potential of such therapeutics.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2025
Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
This review investigates the anti-inflammatory potential of bee venom, a natural compound comprising peptides, enzymes, biogenic amines other bioactive amines, and other bioactive components. It aims to elucidate how bee venom mitigates inflammatory responses caused by tissue injury, infections, and trauma. This study also explores the advancements in nanotechnology to enhance bee venom's therapeutic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!