Cascade-Type Microglial Pyroptosis Inhibitors for Enhanced Treatment of Cerebral Ischemia-Reperfusion Injury.

ACS Nano

Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.

Published: March 2025

Neuroinflammation is a critical factor in the progression of cerebral ischemia-reperfusion injury (CIRI). Pyroptosis, which is an inflammatory form of programmed cell death, greatly amplifies neuroinflammatory processes. It does so by promoting the release of various inflammatory contents that intensify the overall inflammatory response within the central nervous system. Therefore, targeting pyroptosis represents a promising therapeutic strategy for the treatment of CIRI. Excessive generation of reactive oxygen species (ROS) by overactivated microglia is considered to serve as the signal molecule that triggers NLRP3 inflammasome-mediated pyroptosis. However, current pyroptosis inhibitors that solely focus on eliminating existing ROS or inhibiting the NLRP3 inflammasome are not optimal. Here, by coating nanothylakoids (NTs) coengineered with fibrin-binding peptide and MG1 peptide onto dihydrotanshinone I (DT)-loaded nanocarriers, we have developed a cascade-type pyroptosis inhibitor (MDN-MC) that comprehensively regulates the ROS/NLRP3/pyroptosis axis. The incorporation of catalase on the surface of MDN-MC, along with the release of DT, facilitated cascade inhibition of pyroptosis by scavenging existing ROS and suppressing the expression of NLRP3. In the rat model of transient middle cerebral artery occlusion, enhanced behavioral recovery and facilitated neuronal repair were achieved through cascade targeting of inflammatory microglia at the lesion site and implementation of interventions to inhibit pyroptosis, thereby demonstrating promising therapeutic effects. Overall, this work emphasizes the importance of cascade-regulated pyroptosis in reducing neuroinflammation, offering an important mechanistic understanding and possible therapeutic approaches for CIRI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c01434DOI Listing

Publication Analysis

Top Keywords

pyroptosis
9
pyroptosis inhibitors
8
cerebral ischemia-reperfusion
8
ischemia-reperfusion injury
8
promising therapeutic
8
existing ros
8
cascade-type microglial
4
microglial pyroptosis
4
inhibitors enhanced
4
enhanced treatment
4

Similar Publications

Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation.

View Article and Find Full Text PDF

Prostate cancer, the second most common cancer in men, often progresses to castration-resistant prostate cancer despite androgen deprivation therapy. Immunotherapy, revolutionary in cancer treatment, has limited efficacy in prostate cancer due to its "cold tumor" nature. Peptides, with unique advantages, offer new hope.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a life-threatening condition triggered by pneumonia, viral infections, or physical trauma. It manifests clinically as progressive respiratory failure and refractory hypoxemia. Using a lipopolysaccharide (LPS)-induced acute lung injury mouse model, we demonstrated that amniotic mesenchymal stem cells (AMSCs) exhibit robust reparative and anti-inflammatory properties.

View Article and Find Full Text PDF

The Selective 3-MST Inhibitor I3MT-3 Works as a Potent Caspase-1 Inhibitor.

Int J Mol Sci

March 2025

Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.

I3MT-3 (HMPSNE) has been identified as a selective inhibitor of the supersulfide-producing enzyme 3-MST. In this study, we found that I3MT-3 inhibits inflammatory responses, including the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) and inflammatory cell death pyroptosis, induced by the activation of the inflammasomes composed of NLRP1, NLRP3, or AIM2. However, interestingly, the knockdown of 3-MST did not affect the activation of the inflammasomes, suggesting that the inhibitory effect of I3MT-3 on inflammasome activation is mediated by alternative ways rather than the inhibition of 3-MST.

View Article and Find Full Text PDF

The Novel H10N3 Avian Influenza Virus Triggers Lethal Cytokine Storm by Activating Multiple Forms of Programmed Cell Death in Mammalian Lungs.

Int J Mol Sci

February 2025

Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.

The novel H10N3 avian influenza virus (AIV) has infected four individuals since 2021 and caused severe respiratory damage, posing a significant threat to public health. However, its pathogenic mechanisms remain poorly understood. Our findings revealed that H10N3 infection induces severe lung damage and causes death in mice, even at low doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!