The endoplasmic reticulum (ER)-Golgi interface is essential for directing the transport of proteins synthesized in the ER to the Golgi apparatus via the ER-Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. Recently, the ER-Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms and the regulation of trafficking through liquid-liquid phase separation. Numerous diseases have been linked to mutations in proteins localized at the ER-Golgi interface, highlighting the need for comprehensive analysis of these conditions. This review examines the disease phenotypes associated with dysfunctional ER-Golgi transport factors and explores their cellular effects, providing insights into potential therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883524 | PMC |
http://dx.doi.org/10.1111/tra.70001 | DOI Listing |
Traffic
March 2025
Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan.
The endoplasmic reticulum (ER)-Golgi interface is essential for directing the transport of proteins synthesized in the ER to the Golgi apparatus via the ER-Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. Recently, the ER-Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms and the regulation of trafficking through liquid-liquid phase separation.
View Article and Find Full Text PDFCommun Biol
March 2025
Graduate School of Science, Kyoto University, Kyoto, Japan.
Endoplasmic reticulum exit sites (ERESs) are ER subdomains where coat protein complex II carriers are assembled for ER-to-Golgi transport. We previously proposed a dynamic capture-and-release model of ERESs by Golgi stacks in plants. However, how ERESs and Golgi stacks maintain a stable interaction in plant cells with vigorous cytoplasmic streaming is unknown.
View Article and Find Full Text PDFNat Cell Biol
February 2025
Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS UMR5200, Villenave d'Ornon, France.
Endoplasmic reticulum (ER)-to-Golgi trafficking is a central process of the secretory system of eukaryotic cells that ensures proper spatiotemporal sorting of proteins and lipids. However, the nature of the ER-Golgi intermediate compartments (ERGICs) and the molecular mechanisms mediating the transition between ERGICs and the Golgi, as well as the universality of these processes among eukaryotes, remain undiscovered. Here we identify a reticulated tubulo-vesicular network, labelled by MEMBRIN proteins, that is mostly independent of the Golgi, highly dynamic at the ER-Golgi interface and crossed by ER-induced released luminal cargos.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Ecotoxicol Environ Saf
December 2024
Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden. Electronic address:
In vitro models based on permanent fish liver cell lines have proven to be versatile tools for examining chemical biotransformation and toxicity. However, their in vivo relevance remains uncertain due to their potentially de-differentiated phenotype. Here, we investigate whether a 3D cell culture environment can restore hepatocyte-like properties of the Rainbow trout liver cell line RTL-W1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!