Superfund sites are where soil, air, and water are polluted with hazardous materials. Individuals residing and working in these areas are often exposed to metals and other hazardous materials, leading to many adverse health outcomes, including cancer. While individuals are often exposed to multiple chemicals simultaneously, the combined effect of such exposures remains largely unexplored. Here, we investigated the toxicity of metal mixtures in five categories of assays measuring cytotoxicity, oxidative stress, genotoxicity, cytokine release, and angiogenesis. After testing these mixtures in primary cells and cell lines, we discovered that the nickel/arsenic/cadmium and beryllium/arsenic/cadmium combinations exhibited higher cytotoxicity than their individual compounds, suggesting that the mixtures amplified the cytotoxic effect. To investigate the mechanism underlying their toxicity, we evaluated metal-induced oxidative stress, as oxidative stress is a common factor in most metal-related toxicities. Our results showed that cadmium-induced oxidative stress was increased in mixtures. Some mixtures that induced oxidative stress further increased DNA damage, inhibited DNA synthesis, and activated p53. In addition, some mixtures significantly increased interleukin-8 secretion and angiogenesis more than their component compounds. Our findings offer important insights into metal-related toxicity at Superfund sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c07995 | DOI Listing |
Eur J Cancer Prev
March 2025
Department of Oncology and Hemato-Oncology, University of Milan.
Endometriosis is one of the most common gynecological benign disease. Epidemiological evidence suggests a potential association between endometriosis and cancer risk. Accumulating evidence highlighted the risk of ovarian cancer, particularly endometrioid and clear cell subtypes.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China.
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) and antioxidants, is a critical factor in the pathogenesis of a wide range of diseases. The excessive accumulation of ROS can cause severe cellular damage, leading to tissue dysfunction and disease progression. The development of nanomaterials with antioxidant properties presents a promising strategy for addressing this challenge.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!