This study aimed to develop and evaluate clotrimazole (CLZ)-loaded chitosan (CS) nanoparticles in a thermoreversible in situ gel for treating vaginal candidiasis (VC). Chitosan nanoparticles (CS-NPs) were prepared using ionotropic gelation with optimization through the design of experiments (DoE), considering factors such as chitosan pH, sodium tripolyphosphate (TPP) pH, the ratio of chitosan to TPP, and drug. Under optimal conditions (pH of CS, TPP, CS: TPP, and drug at 2, 2, 4:1, and 10 mg), nanoparticles exhibited desirable properties: particle size of 101.7 nm, polydispersity index (PDI) of 0.108, zeta potential of 35.4, and encapsulation efficiency of 98.36%. Thermoreversible in situ gels incorporating poloxamer (PXM) 407 and 188 were produced via the cold method and evaluated for mechanical and physicodynamic properties. It was found that nanoparticulate thermoreversible gel (NTG) prepared with 24% PXM 407, 4% PXM 188, 0.5% HPMC E-50, or 0.5% chitosan is suitable for vaginal administration, since it fulfills the in situ gel characteristics such as pH (4.7), gelation temperature and time (36 ℃ ± 0.2 and 4 ± 0.2 min), and viscosity (2690 cP (centipoise) at 25 ℃ and 15,600 cP at 37 ℃). In vitro release studies for the developed formulation showed 98% drug release over 72 h, with an extended residence time compared to the marketed formulation. In vitro antifungal and cytocompatibility studies revealed that the developed NTG was effective against VC and free from cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876479 | PMC |
http://dx.doi.org/10.1007/s13205-025-04240-6 | DOI Listing |
3 Biotech
April 2025
Department of Pharmaceutics, PSG College of Pharmacy, Affiliated to TN Dr. M.G.R Medical University, Peelamedu, Coimbatore, Tamil Nadu 641004 India.
This study aimed to develop and evaluate clotrimazole (CLZ)-loaded chitosan (CS) nanoparticles in a thermoreversible in situ gel for treating vaginal candidiasis (VC). Chitosan nanoparticles (CS-NPs) were prepared using ionotropic gelation with optimization through the design of experiments (DoE), considering factors such as chitosan pH, sodium tripolyphosphate (TPP) pH, the ratio of chitosan to TPP, and drug. Under optimal conditions (pH of CS, TPP, CS: TPP, and drug at 2, 2, 4:1, and 10 mg), nanoparticles exhibited desirable properties: particle size of 101.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
Ann Pharm Fr
January 2025
Department of Pharmaceutical Chemistry, SPM's College of Pharmacy, 413101 Akluj, Maharashtra, India.
Background: Carmustine is used in the treatment of glioblastoma (GBM). GBM is a well-known life-threatening type of cancerous tumor. GBM covers 60.
View Article and Find Full Text PDFMol Pharm
May 2024
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
The aim of the present study was to develop and evaluate intranasal formulations of the thermoreversible fluoxetine cubosomal in situ gel. This gel was intended for permeation and bioavailability enhancement to target the brain effectively by bypassing the blood-brain barrier (BBB). Fluoxetine-loaded cubosomes were prepared by the homogenization method followed by the cold method approach to develop in situ gel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!