Whole slide image (WSI) classification plays a crucial role in digital pathology data analysis. However, the immense size of WSIs and the absence of fine-grained sub-region labels pose significant challenges for accurate WSI classification. Typical classification-driven deep learning methods often struggle to generate informative image representations, which can compromise the robustness of WSI classification. In this study, we address this challenge by incorporating both discriminative and contrastive learning techniques for WSI classification. Different from the existing contrastive learning methods for WSI classification that primarily rely on pseudo labels assigned to patches based on the WSI-level labels, our approach takes a different route to directly focus on constructing positive and negative samples at the WSI-level. Specifically, we select a subset of representative image patches to represent WSIs and create positive and negative samples at the WSI-level, facilitating effective learning of informative image features. Experimental results on two datasets and ablation studies have demonstrated that our method significantly improved the WSI classification performance compared to state-of-the-art deep learning methods and enabled learning of informative features that promoted robustness of the WSI classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877581 | PMC |
http://dx.doi.org/10.1007/978-3-031-72083-3_10 | DOI Listing |
Front Med (Lausanne)
February 2025
Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States.
Whole slide images (WSIs) play a vital role in cancer diagnosis and prognosis. However, their gigapixel resolution, lack of pixel-level annotations, and reliance on unimodal visual data present challenges for accurate and efficient computational analysis. Existing methods typically divide WSIs into thousands of patches, which increases computational demands and makes it challenging to effectively focus on diagnostically relevant regions.
View Article and Find Full Text PDFNat Commun
March 2025
Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Computational pathology, utilizing whole slide images (WSIs) for pathological diagnosis, has advanced the development of intelligent healthcare. However, the scarcity of annotated data and histological differences hinder the general application of existing methods. Extensive histopathological data and the robustness of self-supervised models in small-scale data demonstrate promising prospects for developing foundation pathology models.
View Article and Find Full Text PDFJ Radiat Res
March 2025
Department of Radiation Oncology & Proton Medical Research Center, Institute of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsubuka, Ibaraki 305-8576, Japan.
This study aims to create a deep learning-based classification model for cervical cancer biopsy before and during radiotherapy, visualize the results on whole slide images (WSIs), and explore the clinical significance of obtained features. This study included 95 patients with cervical cancer who received radiotherapy between April 2013 and December 2020. Hematoxylin-eosin stained biopsies were digitized to WSIs and divided into small tiles.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2024
Department of Radiology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
Whole slide image (WSI) classification plays a crucial role in digital pathology data analysis. However, the immense size of WSIs and the absence of fine-grained sub-region labels pose significant challenges for accurate WSI classification. Typical classification-driven deep learning methods often struggle to generate informative image representations, which can compromise the robustness of WSI classification.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2024
Graph-based learning approaches, due to their ability to encode tissue/organ structure information, are increasingly favored for grading colorectal cancer histology images. Recent graph-based techniques involve dividing whole slide images (WSIs) into smaller or medium-sized patches, and then building graphs on each patch for direct use in training. This method, however, fails to capture the tissue structure information present in an entire WSI and relies on training from a significantly large dataset of image patches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!