Given the risk of zoonotic disease emergence, including new SARS-CoV-2 variants of COVID-19, rapid diagnostic tools are urgently needed to improve the control of the spread of infectious diseases. A one-pot triplex real-time RT-LAMP (reverse-transcription-loop-mediated isothermal amplification) assay, based on two regions of the genome SARS-CoV-2-specifically the Orf1ab and N genes-along with one internal control, the human RNase P gene, was developed. The multiplexing relies on the distinct melting peaks produced during an annealing step. This tool, named RUNCOV, was compared to the gold-standard reverse-transcription real-time quantitative PCR (RT-qPCR) assay. A simple sample preparation step was designed alongside the assay, making it ready for use on site, as a point-of-care diagnostic tool. RUNCOV is rapid (typically less than 40 minutes), highly sensitive and specific. When tested on clinical samples with known SARS-CoV-2 status, its limit of detection (LOD) ranges between 5 and 20 copies per reaction and its diagnostic sensitivity (97.44%) and specificity (100%) values are high compared to the RT-qPCR gold standard. These results were supported with an extensive analysis of over 14 million genomes, demonstrating this tool was capable of detecting all known SARS-CoV-2 variants, including the most recent ones KP.3.1.1 and BA2.86.1. This molecular assay is portable, as demonstrated when it was used successfully in La Réunion in different contexts outside the laboratory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882304PMC
http://dx.doi.org/10.1093/biomethods/bpaf010DOI Listing

Publication Analysis

Top Keywords

one-pot triplex
8
triplex real-time
8
real-time rt-lamp
8
point-of-care diagnostic
8
diagnostic tool
8
detecting sars-cov-2
8
sars-cov-2 variants
8
runcov one-pot
4
rt-lamp point-of-care
4
diagnostic
4

Similar Publications

Given the risk of zoonotic disease emergence, including new SARS-CoV-2 variants of COVID-19, rapid diagnostic tools are urgently needed to improve the control of the spread of infectious diseases. A one-pot triplex real-time RT-LAMP (reverse-transcription-loop-mediated isothermal amplification) assay, based on two regions of the genome SARS-CoV-2-specifically the Orf1ab and N genes-along with one internal control, the human RNase P gene, was developed. The multiplexing relies on the distinct melting peaks produced during an annealing step.

View Article and Find Full Text PDF

Advances in isothermal amplification techniques have accelerated development in biosensing applications and the design of complex molecular devices. The exponential amplification reaction technique, or EXPAR, is uniquely positioned to process molecular information from short oligonucleotide strands (≈10 nucleotides length) typically encountered in molecular computing or microRNA detection. Despite its conceptual simplicity (requiring only a template strand and two enzymes), the issue of nonspecific background amplification has hindered broader adoption.

View Article and Find Full Text PDF

Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca.

View Article and Find Full Text PDF

Improving the signal-to-noise ratio (SNR) by amplifying the outputting signal or reducing nonspecific binding (NSB) are the key techniques in multiple immunoassay. Aiming at these issues, this paper presents an improved multiple indirect competitive immune surface-enhanced Raman scattering (ci-SERS) assay for the rapid screening of highly toxic rodenticides in food and biological samples, which ensured remarkable accuracy, ultra-sensitivity and reproducibility. The non-fouling polymer brush grafted magnetic beads (the MB@P-CyM) were prepared as multiple competitive recognition substrates after conjugating triplex haptens (the MB@P-CyM-hap).

View Article and Find Full Text PDF

As molecular diagnostics move away from polymerase chain reaction (PCR) in order to target point-of-care testing applications, loop-mediated isothermal amplification (LAMP) is gaining popularity due its rapid, sensitive and specific detection with simpler instrumentation. However, while Taqman PCR enables real-time quantitative readout and multiplexed gene detection in single samples, analogous methods in LAMP are not yet broadly developed. To date, the real-time detection methods applied to LAMP involve turbidimetry or measuring fluorescence of an intercalator; however, both of these methods are nonspecific to the target of interest and do not allow for multiple gene detection in a single sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!