The material requirements for gamma-ray detectors for medical imaging applications are multi-fold and sensitivity is often overlooked. High effective atomic number (Z) Cherenkov radiators have raised the attention in the community due to their potential for harvesting prompt photons. A material with one of the highest Z and thus short gamma-ray attenuation length is thallium chloride (TlCl). By doping TlCl with beryllium (Be) or iodine (I), it becomes a scintillator and therefore produces scintillation photons upon gamma-ray interaction on top of the prompt Cherenkov luminescence. The scintillation response of TlCl:Be,I is investigated in terms of intensity, energy resolution, kinetics, and timing capability with and without energy discrimination. The ratio of prompt to slow scintillation photons is used to derive the intrinsic number of produced Cherenkov photons and compared with analytic calculations avoiding complex Monte-Carlo simulations. The experimentally determined number of Cherenkov photons upon 511 keV gamma excitation of 17.9 ± 4.6 photons is in line with our simple calculations yielding 14.5 photons. We observe three scintillation decay time components with an effective decay time of 60 ns. The scintillation light yield of 0.9 ph/keV is sufficient to discriminate events with low energy deposition in the crystal which is used to improve the measured coincidence time resolution from 360 ps FWHM without energy selection down to 235 ps after energy discrimination and time walk correction for 2.8 mm thick TlCl:Be,I crystals, and from 580 ps to 402 ps for 15.2 mm thick ones. Already with the first generation of doped TlCl encouraging timing capability close to other materials with lower effective atomic number has been achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882110 | PMC |
http://dx.doi.org/10.1109/trpms.2024.3487359 | DOI Listing |
Chempluschem
March 2025
Vrije Universiteit Amsterdam, Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, NETHERLANDS, KINGDOM OF THE.
We have quantum chemically investigated the catalytic effect of hydrogen bonding organocatalysts, (H2N)2C=X (X = O, S, Se, NH, PH, AsH, CH2, SiH2 GeH2), such as urea, on the classic Diels-Alder reaction. All studied hydrogen bond donor catalysts enhance the Diels-Alder reaction between acrolein and 1,3-butadiene to a similar extent. Our activation strain and Kohn-Sham molecular orbital analyses show that these organocatalysts lower the reaction barrier by polarizing the p-orbitals away from the reactive carbon atoms of acrolein, reducing the Pauli repulsion between the reactants.
View Article and Find Full Text PDFTissue Eng Regen Med
March 2025
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).
Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.
Environ Sci Technol
March 2025
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Pelletization of biomass fuels has been promoted as an effective alternative to mitigate particulate matter (PM) emissions from the residential burning of raw biomass materials; however, environmentally persistent free radicals (EPFRs), a class of harmful components in PM, from the biomass pellet burning have been rarely studied yet. Here, laboratory-based combustion experiments were conducted to characterize EPFRs for different pellets burned in cooking and heating stoves and compared with those for the corresponding uncompressed biofuels. Emission factors (EFs) of EPFRs for biomass pellets ranged from 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany.
N-Heterocyclic carbenes are highly effective ligands for anchoring functional organic molecules to metal surfaces and nanoparticles, facilitating the formation of self-assembled monolayers. However, their adsorption on surface is difficult to predict and control, and there is an ongoing debate on the geometry of NHC derivatives on gold surfaces and on the role of gold adatoms. We present two single molecules based on a benzimidazole NHC, one equipped with a thiophene substituent, and the other ending with a Br atom.
View Article and Find Full Text PDFAdv Mater
March 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
The delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!