Spatial transcriptomics revolutionizes the understanding of tissue organization and cellular interactions by combining high-resolution spatial information with gene expression profiles. Existing spatial transcriptomics analysis platforms face challenges in accommodating diverse techniques, integrating multi-omics data, and providing comprehensive analytical workflows. STExplore, an advanced online platform, is developed to address these limitations. STExplore supports a wide range of technologies, including sequencing-based and image-based methods, and offers a complete analysis workflow encompassing preprocessing, integration with single-cell RNA sequencing (scRNA-seq), cluster-level and gene-level analyses, and cell-cell communication studies. The platform features dynamic parameter adjustments and interactive visualizations at each analytical stage, enabling users to gain deeper insights into the spatial transcriptomic landscape. Case studies on neurogenesis in embryonic brain development, Alzheimer's disease, and brain tissue architecture demonstrate STExplore's capabilities in enhancing gene expression analysis, revealing cellular spatial organizations, and uncovering intercellular communication patterns. STExplore provides a comprehensive and user-friendly solution for the expanding demands of spatial transcriptomics research. The platform is accessible at http://120.77.47.2:3000/.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202401272DOI Listing

Publication Analysis

Top Keywords

spatial transcriptomics
16
online platform
8
gene expression
8
spatial
7
stexplore
4
stexplore integrated
4
integrated online
4
platform
4
platform comprehensive
4
analysis
4

Similar Publications

Murine Aortic Valve Cell Heterogeneity at Birth.

Arterioscler Thromb Vasc Biol

March 2025

Department of Pediatrics, Division of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee (T.B., J.R.K., A.J.K., J.L.).

Background: Heart valve function requires a highly organized ECM (extracellular matrix) network that provides the necessary biomechanical properties needed to withstand pressure changes during each cardiac cycle. Lay down of the valve ECM begins during embryogenesis and continues throughout postnatal stages when it is remodeled into stratified layers and arranged according to blood flow. Alterations in this process can lead to dysfunction and, if left untreated, heart failure.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly malignant tumor in women, characterized by high morbidity, mortality, and recurrence rates. Although surgical treatment, radiotherapy, and chemotherapy are the mainstays of current treatment methods, the high heterogeneity of TNBC results in unsatisfactory outcomes with low 5-year survival rates. Rapid advancements in omics technology have propelled the understanding of TNBC molecular biology.

View Article and Find Full Text PDF

Introduction: Individuals with Down syndrome (DS) exhibit neurological deficits throughout life including the development of in Alzheimer's disease (AD) pathology and cognitive impairment. At the cellular level, dysregulation in neuronal gene expression is observed in postmortem human brain and mouse models of DS/AD. To date, RNA-sequencing (RNA-seq) analysis of hippocampal neuronal gene expression including the characterization of discrete circuit-based connectivity in DS remains a major knowledge gap.

View Article and Find Full Text PDF

Ischemic stroke is a multifactorial disease that leads to brain tissue damage and severe neurological deficit. Transient middle cerebral artery occlusion (tMCAO) models are actively used for the molecular, genetic study of stroke. Previously, using high-throughput RNA sequencing (RNA-Seq), we revealed 3774 differentially expressed genes (DEGs) in the penumbra-associated region of the frontal cortex (FC) of rats 24 h after applying the tMCAO model.

View Article and Find Full Text PDF

Novel De Novo Variant in an Early-Onset Ovarian Cancer Reveals a Unique Tumor Evolution Pathway.

Int J Mol Sci

March 2025

Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy.

Ovarian cancer (OC) is a highly heterogeneous malignancy, often characterized by complex genomic alterations that drive tumor progression and therapy resistance. In this paper, we report a novel de novo germline variant NM_000059.3:c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!