Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adv Healthc Mater
Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
Published: March 2025
Excessive intracellular iron accumulation can induce mitochondrial dysfunction, leading to chondrocyte ferroptosis, a key contributor to cartilage damage in osteoarthritis (OA). Here, micelle-microfluidic hydrogel microspheres, featuring keto-enol-thiol bridged nano-sized secondary structures that disintegrate within the intracellular peroxidative environment to reveal β-diketone groups with metal chelation capabilities, are utilized for the in situ removal of reactive iron, thereby facilitating cartilage repair through the restoration of mitochondrial homeostasis. The relevant experiments demonstrate that the microspheres reduce iron influx by downregulating transferrin receptor (TfR1) expression and decrease mitochondrial iron uptake by upregulating mitochondrial outer membrane iron-sulfur cluster protein (CISD1), thus restoring intracellular mitochondrial iron homeostasis. Furthermore, the antioxidant properties of the ketone-thioether segments synergistically mitigate chondrocyte phospholipid peroxidation via Nrf2/SLC7A11/GPX4 axis, inhibiting ferroptosis and slowing OA progression. In summary, this system that in situ sustainably chelates reactive iron via metal coordination exhibits great potential in the minimally invasive treatment of OA and other ferroptosis-mediated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202403933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.