Objective: We improved the developmental capacity of porcine early embryos via supplementation with fisetin during in vitro culture (IVC). In addition, we investigated the antioxidant mechanism of fisetin via activation of the NRF2-ARE signalling pathway in porcine early embryos.

Methods: Fisetin (0, 1, 2.5 and 5 μM) was supplemented during IVC to observe its effects on the developmental ability of porcine parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) embryos. The effects of fisetin supplementation on the antioxidant capacity, mitochondrial function, cell proliferation and apoptosis levels of porcine PA embryos were detected via fluorescence staining, and the expression levels of genes related to apoptosis, pluripotency and the NRF2 pathway were also examined.

Results: Compared with the control, 1 μM fisetin during IVC increased the developmental ability of porcine PA, IVF and SCNT embryos. Additionally, fisetin significantly decreased reactive oxygen species (ROS) and apoptosis levels; increased pluripotency during embryonic development, cell proliferation and glutathione (GSH) levels; and improved mitochondrial function in PA embryos. Moreover, the levels of Kelch-like ECH-associated protein 1 (KEAP1) significantly decreased, and the levels of NFE2-like bZIP transcription factor 2 (NRF2) and its downstream antioxidant enzymes significantly increased after fisetin supplementation.

Conclusion: Our data reveal that fisetin protects porcine early embryos from oxidative stress during IVC by activating the NRF2-ARE signalling pathway, thereby improving the success of in vitro embryo production.

Download full-text PDF

Source
http://dx.doi.org/10.5713/ab.24.0691DOI Listing

Publication Analysis

Top Keywords

porcine early
16
nrf2-are signalling
12
signalling pathway
12
fisetin
9
oxidative stress
8
embryonic development
8
activation nrf2-are
8
early embryos
8
developmental ability
8
ability porcine
8

Similar Publications

A novel reassorted swine H3N2 influenza virus demonstrates an undetected human-to-swine spillover in Latin America and highlights zoonotic risks.

Virology

March 2025

Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 111321, Colombia. Electronic address:

Influenza A virus (FLUAV) affects a wide range of hosts, including humans and animals, posing a threat to public health. In swine, H3N2 subtype is associated with human-to-swine spillovers of seasonal viruses. In Latin America, the molecular and antigenic characteristics of swine FLUAV H3N2, as well as its phylogenetic origin, are poorly understood.

View Article and Find Full Text PDF

While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.

View Article and Find Full Text PDF

In vitro production of porcine-hatched blastocysts is important for various applications. However, the mechanobiology of blastocoel expansion and hatching remains poorly understood. Our study aimed to efficiently produce hatched blastocysts and investigate the hatching mechanics of late-stage porcine embryos using time-lapse assessment.

View Article and Find Full Text PDF

In vitro inhibitory activity of indole alkaloid derivatives against porcine epidemic diarrhea virus.

Arch Virol

March 2025

Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that can cause acute diarrhea, vomiting, dehydration, and high mortality of newborn piglets, leading to huge economic losses to the world pig industry. Given the limited efficacy of current PEDV vaccines, there is an urgent need for the development of antiviral drugs. In this study, the antiviral effects of 17 synthesized indole alkaloid derivatives against PEDV were investigated.

View Article and Find Full Text PDF

Purpose: Due to the slowly progressing nature of age-related macular degeneration (AMD) and critical differences in ocular anatomy between humans and animals, it has been difficult to model disease progression, hampering the development of novel therapeutics aimed at impacting drusen biogenesis. To determine whether "drusen-in-a-dish" model systems are of utility in screening potential therapeutics aimed at early-intermediate dry AMD, we developed a detailed characterization of the protein, glycoprotein, and lipid composition of sub-retinal pigment epithelium (RPE) deposits grown by monolayers of ex vivo porcine RPE with human drusen in AMD globes.

Methods: Immunohistochemistry and imaging mass spectrometry (IMS) were performed on 20-week aged monolayers of porcine RPE and human donor globes recovered from an 81-year-old non-transplant donor with confirmed diagnosis of bilateral dry AMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!