Genome editing using CRISPR/Cas or other systems has become a cornerstone of numerous biological and applied research fields. However, detecting the resulting mutations by analysis of sequencing data remains time-consuming and inefficient. In response to this issue, we designed SuperDecode, an integrated software toolkit for analyzing editing outcomes using a range of sequencing strategies. SuperDecode comprises three modules, DSDecodeMS, HiDecode, and LaDecode, each designed to automatically decode mutations from Sanger, high-throughput short-read (next-generation sequencing), and long-read sequencing data (third-generation sequencing), respectively, from targeted PCR amplicons. By leveraging specific strategies for constructing sequencing libraries of pooled multiple amplicons, HiDecode and LaDecode facilitate large-scale identification of mutations induced by single or multiplex target-site editing in a cost-effective manner. We demonstrate the efficacy of SuperDecode by analyzing mutations produced using different genome editing tools (CRISPR/Cas, base editing, prime editing) in different materials (diploid and tetraploid rice, protoplasts), underscoring its versatility in decoding genome editing outcomes across different applications. Furthermore, this toolkit can be used to analyze other genetic variations, as exemplified by its ability to estimate the C-to-U editing rate of the cellular RNA of a mitochondrial gene. SuperDecode offers both a standalone software package and a web-based version, ensuring its easy access and broad compatibility across diverse computer systems. Thus, SuperDecode provides a comprehensive platform for analyzing a wide array of mutations, advancing the utility of genome editing for scientific research and genetic engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2025.03.002 | DOI Listing |
Front Immunol
March 2025
Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
Hypertension, a globally prevalent condition, is closely associated with T cell-mediated inflammatory responses. Studies have shown that T cells, by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ), Interleukin-17 (IL-17), and Tumor necrosis factor-alpha (TNF-α), directly lead to vascular dysfunction and elevated blood pressure. The activation of Th1 and Th17 cell subsets, along with the dysfunction of regulatory T cells (Tregs), is a critical mechanism in the onset and progression of hypertension.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.
Since the advent of the clustered regularly interspaced short palindromic repeats (CRISPR) system in the gene editing field, diverse CRISPR-based gene editing tools have been developed for treating genetic diseases. Of these, base editors (BEs) are promising because they can carry out precise gene editing at single-nucleotide resolution without inducing DNA double-strand breaks (DSBs), which pose significant risks of genomic instability. Despite their outstanding advantages, the clinical application of BEs remains challenging due to their large size, which limits their efficient delivery, particularly in adeno-associated virus (AAV)-based systems.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA.
Airway basal cells proliferate and regenerate airway epithelium after injury. The first step during airway epithelial repair is airway basal cell proliferation to close the wound. Previously, we demonstrated that expression is reduced in airway stem cells isolated from chronic obstructive pulmonary disease.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada.
CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease Cas9 to cut DNA at specific locations directed by a guide RNA.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Serine acetyltransferase (SAT) is a critical enzyme in the sulfur-assimilation pathway of cysteine, playing an essential role in numerous physiological functions in plants, particularly in their response to environmental stresses. However, the structural characteristics of the soybean gene family remain poorly understood. Members of the soybean gene family were identified using the Hidden Markov Model approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!