Per- and polyfluoroalkyl substances (PFAS) are contaminants of increasing concern, with over seven million compounds currently inventoried in the PubChem PFAS Tree. Recently, ion mobility spectrometry has been combined with liquid chromatography and high-resolution mass spectrometry (LC-IMS-HRMS) to assess PFAS. Interestingly, using negative electrospray ionization, perfluoroalkyl carboxylic acids (PFCAs) form homodimers ([2M-H]), a phenomenon observed with trapped, traveling wave, and drift-tube IMS. In addition to the limited research on their effect on analytical performance, there is little information on the conformations these dimers can adopt. This study aimed to propose most probable conformations for PFCA dimers. Based on qualitative analysis of how collision cross section (CCS) values change with the mass-to-charge ratio (/) of PFCA ions, the PFCA dimers were hypothesized to likely adopt a V-shaped structure. To support this assumption, geometry optimizations were performed to generate a set of conformers for each possible dimer. A CCS value was then calculated for each conformer using the trajectory method with Lennard-Jones and ion-quadrupole potentials. Among these conformers, at least one of the ten lowest-energy conformers identified for each dimer exhibited theoretical CCS values within a ±2% error margin compared to the experimental data, qualifying them as plausible structures for the dimers. Our findings revealed that the fluorinated alkyl chains in the dimers are close to each other due to a combination of C-F···O=C and C-F···F-C stabilizing interactions. These findings, together with supplementary investigations involving environmentally relevant cations, may offer valuable insights into the interactions and environmental behavior of PFAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.5c00007 | DOI Listing |
J Environ Sci (China)
August 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
Reclaimed water for irrigation or hydroponic cultivation provides exposure pathways for per- and polyfluoroalkyl substances (PFAS) to enter the human food chain. This study employed hydroponic methods to investigate the behavior of legacy PFAS and emerging chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in lettuce grown under environment-related exposure levels and assessed the human exposure risks from consuming contaminated lettuce. Overall, PFAS in lettuce were concentration-dependent, with long-chain PFAS tending to accumulate in roots and short-chain PFAS accumulating more in shoots.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2025
Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Liège 4000, Belgium.
Per- and polyfluoroalkyl substances (PFAS) are contaminants of increasing concern, with over seven million compounds currently inventoried in the PubChem PFAS Tree. Recently, ion mobility spectrometry has been combined with liquid chromatography and high-resolution mass spectrometry (LC-IMS-HRMS) to assess PFAS. Interestingly, using negative electrospray ionization, perfluoroalkyl carboxylic acids (PFCAs) form homodimers ([2M-H]), a phenomenon observed with trapped, traveling wave, and drift-tube IMS.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated chemicals that cause potential risk in PFAS-impacted soil and water. The adsorption efficiency of 30 PFAS mixtures using different adsorbents in environmentally relevant concentrations was investigated. Different meso/microporous designed adsorbents (n = 7) were used for PFAS adsorption and their interfacial interactions.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
The global ubiquity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) highlights the important role of atmospheric transport. This study monitored 47 PFAS, including perfluoroalkyl acids (PFAAs), emerging PFAS, and precursors of PFAAs (-PFAAs), in seasonal ambient air in Japan between 2022 and 2023, quantifying 38 of them in collected samples. The profiles were dominated by 6:2 fluorotelomer alcohol, perfluorobutanesulfonic acid, and perfluorobutanoic acid, with median levels of 245, 117, and 78.
View Article and Find Full Text PDFJ Toxicol Sci
March 2025
Department of Health and Environmental Science, Kyoto University Graduate School of Medicine.
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals containing stable per- or polyfluoroalkyl groups. Recent epidemiological studies have shown that PFAS cause health risks even at low concentrations. This review outlines the toxicokinetics, exposure and health risks of PFAS, with a focus on perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and long-chain perfluoroalkyl carboxylic acids (LC-PFCAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!