Background: This study aims to explore the role of autophagy-associated genes (ATG) and their epigenetic markers in the progression of mycobacterium tuberculosis (M. tb) infection, and to test the effects of de-methylation agents on macrophage functions against TB.
Methods: ATG expressions and their gene promoter DNA methylation levels of blood immune cells were measured in 60 patients with active pulmonary TB disease, 31 subjects with latent TB infection (LTBI), and 15 non-infected healthy subjects (NIHS). An in vitro monocytic THP-1 cell culture model under M. tb-specific antigen stimuli was applied.
Results: LC3B protein expression of blood M1/M2a monocyte, ATG5 protein expression of M2a, and mean DNA methylation levels of the LC3B gene promoter region of peripheral blood mononuclear cells were all increased in active TB patients versus either LTBI or NIHS group. The LC3B methylation levels were negatively correlated with its protein expressions. The discrimination of active TB disease from LTBI or NIHS was optimally captured by prediction scores, which combined LC3B (+) percentage of blood M1/M2a monocyte, LC3B gene promoter DNA methylation level, male gender, and body mass index. LC3B and ATG5 expressions of both blood M2a and neutrophil were decreased after 6-month anti-TB therapy, but hypermethylated LC3B gene promoter persisted. In vitro 5-Aza-2'-deoxycytidine treatment improved bactericidal, apoptosis and phagocytosis functions through augmenting autophagy flux via mechanisms other than demethylation of the LC3B gene promoter in THP-1 cells.
Conclusions: Increased LC3B expression and LC3B gene promoter hypermethylation may serve as biomarkers for progression of M. tb infection, while use of de-methylation agent may be a potential approach to host-directed immunotherapy in active TB disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884087 | PMC |
http://dx.doi.org/10.1186/s12931-025-03149-1 | DOI Listing |
Trends Biotechnol
March 2025
Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China. Electronic address:
Targeted random mutagenesis is crucial for breeding, directed evolution, and gene function studies, yet efficient tools remain scarce. Here, we present obligate mobile element guided activity (OMEGA)-R, an innovative targeted random mutagenesis system that integrates SpyCatcher-enIscB and PolI3M-TBD-SpyTag, outperforming existing state-of-the-art technologies in key metrics, such as protein size, mutagenesis efficiency, window length, and continuity. OMEGA-R achieves a dramatic enhancement of on-target mutagenesis, reaching a rate of 1.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India. Electronic address:
Pigeonpea is an important legume valued for its high nutritional, agricultural, and economic significance in the Asian subcontinent. Despite its potential for high yield, productivity remains stagnant due to several abiotic and biotic stresses. To mitigate these challenges, biotechnological interventions like genome editing offer promising solutions.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh. Electronic address:
One of the largest and most significant transcription factor gene families in plants is the SQUAMOSA promoter binding protein (SBP) gene family and they perform critical regulatory roles in floral enhancement, fruit development, and stress resistance. The SBP protein family (also known as SPL) has not yet been thoroughly studied in the staple fruit crop, banana. A perennial monocot plant, banana is essential for ensuring food and nutrition security.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2025
Department of Biology, Whitman College, Walla Walla, Washington 99362, USA
The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the plant auxin hormone signaling pathway. As a plant synthetic biology chassis, yeast offers rapid growth, well-established genetic and biochemical tools, and core eukaryotic cellular machinery compatible with heterologous plant gene expression. The AuxInYeast system for maize consists of yeast cells containing the minimal necessary set of plant auxin signaling parts: a receptor (ZmTIR1/AFB), repressor (ZmIAA), corepressor (REL2), transcription factor (ZmARF), and auxin response -element (auxRE).
View Article and Find Full Text PDFVox Sang
March 2025
Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background And Objectives: The AB is a rare phenotype in the ABO blood group system. Here, we first report a novel ABO mutation discovered in a Chinese woman with an AB. Third-generation sequencing was employed to investigate the molecular mechanisms underlying AB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!