The administration of propofol for sedation or general anesthesia presents challenges due to the complex relationship between patient factors and real-time physiological responses. This study explores the application of deep reinforcement learning (DRL) to automate propofol dosing, aiming to maintain multiple physiological parameters including bispectral index (BIS), heart rate (HR), respiratory rate (RR), and mean arterial pressure (MAP) within safe and desired ranges. A multi-variable pharmacokinetic-pharmacodynamic (PK/PD) simulation environment was developed to model the effects of propofol on the physiological parameters. An adjustable reward system was designed for multi-target anesthetic infusion. The DRL agent was trained using Twin Delayed Deep Deterministic Policy Gradient (TD3), interacting with the simulation environment and receiving rewards for maintaining physiological parameters close to their targets and above safety thresholds. The performance of the TD3 agent was compared to other DRL algorithms and traditional control methods. The TD3 algorithm demonstrated superior performance in achieving precise and safe control of multiple physiological parameters during propofol administration, outperforming other DRL algorithms and traditional control methods. The application of DRL, particularly TD3, offers a promising approach for automating propofol dosing, ensuring better management of physiological parameters and enhancing the safety and effectiveness of sedation and general anesthesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10877-025-01269-z | DOI Listing |
J Magn Reson Imaging
March 2025
Department of Radiology, Central Hospital of Dalian University of Technology, Dalian, People's Republic of China.
Unlabelled: Four-dimensional flow cardiovascular magnetic resonance (4D Flow cardiac MRI) is an advanced non-invasive imaging technology, and its derived kinetic energy (KE) blood flow parameters have been confirmed as a potential biomarkers for assessing ventricular hemodynamics. This review synthesizes details on the methodology, clinical significance, and current status of studies focused on quantifying KE parameters of the ventricle using 4D Flow cardiac MRI, providing an objective foundation for further exploration of the value of KE in cardiac diseases.
Study Type: retrospective.
Biol Open
March 2025
Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
The Integrator is a metazoan-conserved protein complex with endonuclease activity that functions to cleave various RNA substrates to shape transcriptome homeostasis by coordinating small nuclear RNA biogenesis to premature transcription termination. Depletion of Integrator results in developmental defects across different model systems and has emerged as a causative factor in human neurodevelopmental syndromes. Here, we use the model system Caenorhabditis elegans to enable studying the temporal effects of Integrator depletion on various physiological parameters with the auxin-inducible degron system that permitted depletion of INTS-4 (Integrator subunit) catalytic subunit of the protein complex.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Head of the Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia; Professor; UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
Unlabelled: Hypoxia is a part of many pathological and some physiological processes. It also occurs as a result of surgical techniques associated with limiting the blood supply to the operated organs and tissues. Hypoxia leads to a significant decrease in the ability of cells to implement energy-dependent processes due to a reduced contribution of mitochondria to the synthesis of adenosine triphosphate (ATP).
View Article and Find Full Text PDFFront Plant Sci
February 2025
College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China.
Nicosulfuron can repress the growth and quality of sweet corn (), and graphene oxide has been used for sustainable agriculture. However, the underlying mechanism of the toxicity of nicosulfuron that is mediated in sweet corn remains elusive. To explore the potential mechanism of GO-mediated nicosulfuron toxicity in sweet corn in this study, we investigated the effects of graphene oxide on nicosulfuron stress in the sweet corn sister inbred lines of H01 and H20.
View Article and Find Full Text PDFFront Physiol
February 2025
College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
Objective: This study aims to employ physiological model simulation to systematically analyze the frequency-domain components of PPG signals and extract their key features. The efficacy of these frequency-domain features in effectively distinguishing emotional states will also be investigated.
Methods: A dual windkessel model was employed to analyze PPG signal frequency components and extract distinctive features.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!