This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.1), and Envelope (E; MOI = 1 or 0.1) viral proteins, and the fourth one was changed between a baculovirus bearing Spike protein (S; MOI = 3 or 0.3) or receptor-binding domain (RBD; MOI = 3 or 0.3) genes of SARS-CoV-2. Similar performance was verified for both culture media in SARS-CoV-2 VLP production bearing four structural virus proteins or RBD domain. The SARS-CoV-2 structural proteins' expression was comparable at different MOIs (tenfold) as well as SARS-CoV-2 VLP size (around 100 nm). The increase in specific death rates over the coinfection phase was confirmed in relatively high MOI assays. This finding was related to an exponential virus titer profile for high MOIs over the entire infection phase, meanwhile, a viral peak was observed at low MOIs, confirming a secondary infection. The SARS-CoV-2 VLP improved production carrying immunogenic S protein was confirmed concerning others holding RBD. However, the protein composition of produced VLP should be studied further to assess the VLP homogeneity when different culture media and MOIs are used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-025-03572-w | DOI Listing |
J Med Virol
March 2025
Changping Laboratory, Beijing, China.
The emergence of Omicron variants dramatically changed the transmission rate and infection characteristics compared to previously prevalent strains, primarily due to spike protein mutations. However, the impact of individual mutations remained unclear. Here, we used virus-like particle (VLP) pseudotyped to investigate the functional contributions by 12 common mutations in the spike protein.
View Article and Find Full Text PDFBiotechnol Lett
March 2025
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil.
This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, United States.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles (VLPs) are ∼100-nm-sized bioinspired mimetics of the authentic virus. We undertook molecular engineering to optimize the VLP platform for messenger RNA (mRNA) delivery. Cloning the nucleocapsid protein upstream of M-IRES-E resulted in a three-plasmid (3P) VLP system that displayed ∼7-fold higher viral entry efficiency compared with VLPs formed by co-transfection with four plasmids.
View Article and Find Full Text PDFBiotechnol Bioeng
February 2025
Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
The devastating global toll precipitated by the SARS CoV-2 outbreak and the profound impact of vaccines in stemming that outbreak has established the need for molecular platforms capable of rapidly delivering effective, safe and accessible medical interventions in pandemic preparedness. We describe a simple, efficient and adaptable process to produce SARS CoV-2 virus-like particles (VLPs) that can be readily scaled for manufacturing. A rapid but gentle method of tangential flow filtration using a 100 kDa semi-permeable membrane concentrates and buffer exchanges 0.
View Article and Find Full Text PDFVaccine
March 2025
Izmir Biomedicine and Genome Center, DEU Saglik Kampusu, Balcova, Izmir, Turkiye. Electronic address:
Background: Waning Spike-elicited immunity and emerging COVID-19 variants underscore the need for vaccines leveraging multiple SARS-CoV-2 antigens, rapidly adaptable to evolving strains. Herein, we evaluated the safety and immunogenicity of a CpG ODN-adjuvanted, alum-adsorbed, virus-like particle (VLP) vaccine displaying the hexaproline stabilized Spike (S) protein and the Nucleocapsid, Membrane, and Envelope proteins of SARS-CoV-2.
Methods: In phase 1 randomized, double-blind, placebo-controlled, dose-escalation trial, participants (N = 38, aged 18-59) received two subcutaneous injections of either 10 μg or 40 μg of VLP or placebo, 21 days apart.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!