Molecular identification of a thioredoxin peroxidase in Babesia gibsoni with potential against oxidative stress.

Parasitol Res

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.

Published: March 2025

Babesia gibsoni is the infectious agent of canine babesiosis, a vector-borne infection that poses a global threat to the canine health. As B. gibsoni is an erythrocytic intracellular parasite, the completion of its genome and transcriptome sequencing and analysis facilitates the elucidation of the mechanism of B. gibsoni residue in the erythrocyte. The main function of red blood cells (RBCs) is oxygen delivery; thus, B. gibsoni may be exposed to high levels of oxidative stress. To date, no report is available on the mechanism by which B. gibsoni survives oxidative stress inside the RBCs. In this study, the thioredoxin peroxidase, an important type of peroxidoxin, was identified from B. gibsoni, with 255 amino acids and a molecular weight of 27.7 kDa. There are two conserved "VCP" domains at the N- and C-termini, respectively, indicating that this gene was a 2-Cys peroxiredoxin belonging to the PTZ00137 superfamily. It was named BgTPx-2 and was detected to be located in the B. gibsoni-infected erythrocytes through an indirect immunofluorescence assay using the polyclonal antibody against the recombinant TPx-2. Additionally, its antioxidant activity was analyzed by mixed-function oxidation assay, and BgTPx-2 could protect the pBluescript SK ( +) plasmid from oxidative damage, suggesting an antioxidant function of BgTPx-2. Moreover, the immunogenicity of BgTPx-2 was tested by Western blotting and ELISA using the serum of beagle dogs infected with B. gibsoni, and the positive serum exhibited a detectable and significant antibody response against BgTPx-2 on day 4 and day 9 post-infection, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882686PMC
http://dx.doi.org/10.1007/s00436-025-08472-6DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
thioredoxin peroxidase
8
gibsoni
8
babesia gibsoni
8
mechanism gibsoni
8
bgtpx-2
5
molecular identification
4
identification thioredoxin
4
peroxidase babesia
4
gibsoni potential
4

Similar Publications

Background: This study aimed to investigate the effects of total antioxidant capacity (T-AOC), superoxide dismu-tase (SOD), and malondialdehyde (MDA) in blood on the postoperative wound healing process of patients with severe burns treated by Meek micrografting.

Methods: In total, 154 patients with severe burns who underwent Meek micrografting treatment were selected as the observation group, and 80 healthy people were taken as the control group. General clinical data were collected, and serum T-AOC, SOD, and MDA were analyzed by biochemical analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma is a chronic respiratory disease involving inflammation and other respiratory issues, with mitochondria playing a crucial role in its underlying mechanisms.
  • A bibliometric analysis of research from 2004 to mid-2024 identified 669 publications, showing significant growth in studies since 2015, primarily from the US, China, and the UK.
  • Key themes include mitochondrial dysfunction and oxidative stress, with emerging research focusing on mitochondrial biogenesis and the NLRP3 inflammasome, suggesting opportunities for new therapeutic strategies targeting mitochondria in asthma treatment.
View Article and Find Full Text PDF

Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.

View Article and Find Full Text PDF
Article Synopsis
  • The respiratory system is vital for oxygen absorption and carbon dioxide expulsion, helping to maintain the body's acid-base balance and metabolic stability.
  • The outbreak of COVID-19 has highlighted the need for new treatments for respiratory diseases, leading to renewed interest in Tanshinone IIA, a bioactive compound traditionally used for heart diseases.
  • Research shows Tanshinone IIA has various therapeutic effects, including anti-inflammatory and anti-cancer properties, and it shows promise in treating conditions like asthma and lung cancer, making it a valuable focus for future studies.
View Article and Find Full Text PDF

Ferroptosis, pathogenesis and therapy in AS co-depression disease.

Front Pharmacol

February 2025

School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.

Atherosclerosis (AS)-related cardiovascular disease and depression are often comorbid, with patients with cardiovascular disease facing an increased risk of depression, which worsens AS. Both diseases are characterized by oxidative stress and lipid metabolism disorders. Ferroptosis, a form of cell death characterized by iron overload and harmful lipid peroxide accumulation, is found in various diseases, including AS and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!