It is widely acknowledged that constructing small injection barriers for balanced electron and hole injections is essential for light-emitting diodes (LEDs). However, in highly efficient LEDs based on metal halide perovskites, a seemingly large hole injection barrier is usually observed. Here we rationalize this high efficiency through a surfactant-induced effect where the hole concentration at the perovskite surface is enhanced to enable sufficient bimolecular recombination pathways with injected electrons. This effect originates from the additive engineering and is verified by a series of optical and electrical measurements. In addition, surfactant additives that induce an increased hole concentration also significantly improve the luminescence yield, an important parameter for the efficient operation of perovskite LEDs. Our results not only provide rational design rules to fabricate high-efficiency perovskite LEDs but also present new insights to benefit the design of other perovskite optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-025-02123-yDOI Listing

Publication Analysis

Top Keywords

hole concentration
12
surfactant-induced hole
8
highly efficient
8
light-emitting diodes
8
perovskite leds
8
perovskite
5
concentration enhancement
4
enhancement highly
4
efficient perovskite
4
perovskite light-emitting
4

Similar Publications

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Schottky diodes have been a fundamental component of electrical circuits for many decades, and intense research continues to this day on planar materials with increasingly exotic compounds. With the birth of nanotechnology, a paradigm shift occurred with Schottky contacts proving to be essential for enabling nanodevice inventions and increasing their performance by many orders of magnitude, particularly in the fields of piezotronics and piezoelectric energy harvesting. ZnO nanomaterials have proven to be the most popular materials in those devices as they possess high piezoelectric coefficients, high surface sensitivity, and low resistivity due to the high native n-type doping and low hole concentration.

View Article and Find Full Text PDF

Recently, interface scattering and low mobility have significantly impeded the performance of two-dimensional (2D) P-type transistors. 2D semiconductor tellurium (Te) has garnered significant interest owing to its unique atomic chain crystal structure, which confers ultrahigh hole mobility. van der Waals heterojunction enhances transistor performance by reducing scattering at the gate-channel interface, attributed to its high-quality interface.

View Article and Find Full Text PDF

Strontium phosphorus chloride (SrPCl) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of SrPCl-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): CuO, CBTS, MoO, and CuI.

View Article and Find Full Text PDF

This study aimed to investigate the structural, optical, and electronic properties of WO thin films modified by Ta-doping, considering their potential application in photoelectrochemical (PEC) water splitting. Due to its unique physical and chemical properties, WO films have been commonly suggested as a promising photoanode for hydrogen production. However, the wide bandgap and unsuitable band edge positions of WO limit its PEC efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!