Excess fat intake is associated with kidney toxicity and dysfunction. Because fatty acids can also be reversibly attached onto cysteine residues and modulate the function of several membrane-bound proteins, we studied the effect of high-fat diet (HFD) on the S-acylated proteome of mouse kidneys to uncover novel biochemical changes that might contribute to lipid-induced nephrotoxicity. We compared the S-acylated proteome of kidneys from mice fed a chow diet (CD) or a HFD. HFD caused albuminuria. The HFD intervention induced a large-scale repression of protein S-acylation as well as of the most abundant ceramides and sphingomyelin species, which are highly suggestive of a reduction in acyl-CoA availability. The HFD-induced S-acylation repression mostly affected proteins involved in endocytosis and intracellular transport. Notably, the kidneys of mice fed a HFD displayed a marked decrease in the total amount and in the S-acylated form of megalin, the main tubular protein retrieval system. Further in vitro experiments indicated that S-acylation inhibition results in a reduction of megalin protein level. We conclude that diet-induced derangement of fatty acid metabolism modifies the renal landscape of the S-acylated proteome during the early stages of the kidney injury, which might reduce the efficiency of protein reabsorption by the proximal tubule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882957 | PMC |
http://dx.doi.org/10.1038/s41598-025-92530-7 | DOI Listing |
Sci Rep
March 2025
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland.
Excess fat intake is associated with kidney toxicity and dysfunction. Because fatty acids can also be reversibly attached onto cysteine residues and modulate the function of several membrane-bound proteins, we studied the effect of high-fat diet (HFD) on the S-acylated proteome of mouse kidneys to uncover novel biochemical changes that might contribute to lipid-induced nephrotoxicity. We compared the S-acylated proteome of kidneys from mice fed a chow diet (CD) or a HFD.
View Article and Find Full Text PDFJ Proteome Res
August 2024
Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, United States.
Proteins undergo reversible -acylation via a thioester linkage in vivo. -palmitoylation, modification by C16:0 fatty acid, is a common -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol.
View Article and Find Full Text PDFAnal Methods
July 2024
Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, People's Republic of China.
Protein -acylation is an important lipid modification and plays a series of biological functions. As a classic proteomic method for -acylated proteome analysis, the acyl-biotin exchange and its derivative methods are known to be very labour-intensive and time-consuming all the time, and will result in significant sample loss. Multiple methanol-chloroform precipitations are involved in order to remove the substances that would interfere with enrichment and identification including detergents, the residual reduction and alkylation reagents.
View Article and Find Full Text PDFShock
June 2024
David Braley Research Institute, Hamilton, Ontario, Canada.
bioRxiv
June 2024
Division of Pulmonary, Allergy and Critical Care Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
Proteins undergo reversible -acylation via a thioester linkage in vivo. -palmitoylation, modification by C16:0 fatty acid, is a common -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!